In the frame of this joint SNF and F.R.S-FNRS project with Belgium partners from the University of Liege, we study the highly variable seismic response of rock instabilities, and related slope failure potential of different mountain morphologies. Systematic ambient-vibration measurements at different rock slope instabilities with array-configurations allow to analyze the influence of layering and material of weathered rocks on the propagation of surface waves and amplification of ground motion. Normal mode vibrations can be observed on various rock structures with pronounced block structures. Application areas were selected in Belgium, Romania and Switzerland.
A main goal of this project is to better understand the relation between wave-field properties like directivity, amplification, and eigenfrequencies, and geotechnical characteristics of rock slope instabilities. Additionally, the influence of weather and climate, as well as long-term changes in the dynamic response of the landslides are examined in detail using semi-permanent or permanent seismic stations. With such installations we study the vibrations of instabilities during earthquakes, which will help to develop models for earthquake induced mass movements.
Experimental seismological techniques will be further developed with enhanced imaging capability and sensitivity. The expected results have the potential to be applied directly in hazard analysis and risk reduction measures.