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Summary
« Attenuation is anisotropic and sensitive to fracture properties

An increase in anisotropic attenuation was measured during hydraulic fracturing

at Cotton Valley

Interpreted as an increase in fracture density

We will look at the link between attenuation and shear-wave splitting

Cotton Valley Dataset

We used data from the Carthage Cotton Valley hydraulic injection experiment in
East Texas - a widely studied dataset, and hence an excellent example for
developing a novel technique (Rutledge et al., 2004 and Wuestefeld et al., 2011).

Rutledge et al. (2004) located 888 events (Fig. 1), and calculated moment tensors.
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Fig 1. Location of events (circles), receivers (triangles) and injections (stars). The events and
receivers used in this study (coloured).

Log-Spectral-Ratio Method

At* is the differential attenuation and travel time ln(
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Fig 2. Windows, FFTs and LSR for our waveforms. We use the clustering approach of Kelly et
al., (2011) and the attenuation anisotropy approach of Carter and Kendall (2006).
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For the injection period, the anisotropy increased with

time, which was interpreted, using the inversion approach
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of Verdon et al. (2009), as an increase in fracture density

(Fig. 4). The fracture strike did not change with time.

(o]
o

o'
=

N
=

Fig 4. (a) Delay time from shear-wave splitting
measurements increasing with time. (b) Histogram of the
number of events along with bottom pressure and slurry
rate of the injection. (c) Fracture strike and (d) fracture
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Conclusions

Attenuation in S2 is sensitive to fracture density
Increased attenuation has been measured, coinciding with injection and increased in shear-wave splitting delay time

This can be interpreted as an increase in fracture density.
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