Decoding Instability: Linking Microseismicity Patterns, Deformation Monitoring and Ambient Seismic Noise at the Åknes Rock Slope

Volker Oye^{1,2,3}, Nadege Langet^{1,2}, Laura Bogner⁴, Charlotte Bruland^{1,2}, Andreas Grøvan Aspaas^{5,3}, Celine Hadziioannou⁴

NORSAR Kjeller, Norway, volker@norsar.no;
 CGF, NTNU, Trondheim, Norway;
 University of Oslo, Norway;
 University of Hamburg, Germany;
 Norwegian Water Resources and Energy Directorate, NVE, Norway.

The Åknes instable rock slide & instrumentation

18-54 Mill m³ rock mass moving with 3-5cm/year
-> may generate 30-80m high flood wave!
<u>Comprehensive monitoring:</u>
Surface geophones, borehole geophones, broadband seismometer, GPS, InSAR, extensometers, hydrology, ...

2 March 2024 episodic tremor

First onset observed at the deepest geophone (50 m)

4 main phases:

(1) Rapid increase in amplitude;

(2) Intensification of seismic activity (decrease of inter-event time), stable amplitude;

(3) Stable amplitude, stable inter-event time;

(4) Decrease in amplitude together with deceleration of seismic rate.

Episodic Tremor – 70 min duration, on 2 March 2024

2 March 2024 episodic tremor

- 5 main families of events
- Tiny interevent times
- Activation of small asperities?
- Other episodes have extremely similar characteristics and waveforms.

된 ⁵⁰⁰ 원 400

1: 413 events

2: 625 events

a

Other observations of episodic tremors

Most tremors occur during spring (Mar-May) and are likely related to snow-melt.

Last tremor in October is different and coincides with large tremor activity at the near surface or upper sliding plane.

Water level changes during episodic tremors

- Most water level changes at upper borehole show increase of water levels before/during episodic tremor
- Most water level changes at **lower borehole** show increase of water levels **during/after** episodic tremor.
- Is the tremor triggered by fluids, and then enhancing the fluid flow?
- However, no clear knowledge on flow directions, remaining uncertainty on exact location of tremor.

Detection overview for different event types, not only episodic tremors

High frequency events (with depth estimation based on moveout)

Ambient noise study to identify relative velocity changes (dv/v)

Velocity drops during snow melt season. Additional drop with onset of displacement in lower shear zone in 2024.

DV/V and Correlation Coefficient from Autocorrelations vs Time (35-70Hz)

 Normalized dv/v in upper shear zone increases during snowweight, decreases below after snow melt
 Stable correlation coeff.

Similar observations of tremors before ruptures/landslides

Japan - Yamada et al., GRL, 2016 0.62 million m³, closest stations at 850 m, local magnitude of largest precursor event M=-1

What we decoded so far...

- Episodic tremors occur in relation to snow melt, increased water levels.
- Correlation between displacement in shear zones in wells and seismic events.
- High correlation in event waveforms, pointing towards activity at certain asperities.
- Difference in depth levels of events points towards activity on different sliding planes.
- Correlation seen on ambient noise indicates dv/v changes in relation to displacement, snow weight and melting season.
- Conceptual model established
- So far, all episodic tremors at Aaknes stopped before catastrophic failure.

