Fault reactivation by fluid injection considering permeability evolution in damage zones: A case study of Guy-Greenbrier sequence

Zhuo Yang¹, Alissar Yehya^{2,3}, Jiuxun Yin¹, Marine Denolle¹, James R. Rice^{1,2}

¹Department of Earth and Planetary Sciences, Harvard University ²School of Engineering and Applied Sciences, Harvard University ³Dept. of Chemical and Petroleum Engineering, American University of Beirut

Schatzalp Workshop March, 2019

Schematic diagram of a representative strike-slip fault zone

- Includes a narrow, highly granulated, fault core (few cm scale thickness), and associated damage zones (10's of m scale).
- Coseismic damage zones generated by concentrated stresses near seismic rupture fronts.
- Longer-term broadening of damage zones may develop, driven by viscous postseismic creep in response to tectonic forcing.

Measured permeability in relation to fault architecture

Fault core:
 low permeability
 Damage zone:

high permeability

Lockner et al. [USGS Open File Report 00-129, 2000]: Permeabilty measured on drill core taken from sites near fault strands slipped in 1995 Kobe earthquake

- We relate the permeability to the volumetric strain using a model developed and applied by Chin et al. (2000)
- Porosity:

$$\varphi(t) = 1 - (1 - \varphi_i) e^{-\varepsilon_{vol}(t)}$$

• Permeability:

$$k(t) = k_i \left(\frac{\varphi(t)}{\varphi_i}\right)^n$$

Cappa and Rutqvist (2010)

Permeability k should be time dependent.

Fault's Geometry Architecture: 2D Horizontal Plane (not to scale)

along this cutting line

• Fault's Geometry Architecture: 2D Horizontal Plane (not toscale)

Observe pore pressure along this cutting line

Permeability (in m²) Variation in and near Fault Zone

Effect of damage zones on pressure diffusion

Pore pressure change ($\Delta p/p_{inject}$) after 40 days of injection:

Model without damage zone

Model with high k damage zone

The existence of high permeability (k) damage zones facilitates the pressure diffusion: zones act as conduits for fluid pressure changes.

Effect of poroelastic coupling

Effect of permeability evolution

Application: Arkansas, USA

A continuous swarm of small earthquakes illuminated a **previously undetected** fault, now called the "Guy-Greenbrier Fault"

11

Horton's relocations. Events clustered along a single structure, now called the Guy-Greenbrier Fault

(Horton, Seism. Res. Lett., 2012)

COMSOL FEM model:

An attempt to understand the nucleation of these events.

Include: Anisotropic damage zones surrounding fault core; Poroelastic coupling; Permeability evolution.

Permeability setting

Permeability in the model

Layers	Permeability (m^2)
Confining Unit	10^{-16}
Ozark Aquifer	10^{-15}
Basement	10 ⁻²¹

×10⁴ m

-1

0.5

-2

-6

×10³ m

-0.5

0

Pressure change on vertical cross-sections, approx. 1.5 yr later

Pressure change on horizontal cross-sections, approx. 1.5 yr later

Pore pressure change in the faults

Time (day)

<u>Change in overall Coulomb stress</u>: $\Delta CFS = \Delta \tau - f (\Delta \sigma - \Delta p)$

 Δ CFS is positive \rightarrow EQ is likely to be triggered. So, either an increase in shear stress, caused by the poroelastic effect, or an increase in pore pressure due to fluid diffusion, can trigger an EQ.

<u>Change in overall Coulomb stress</u>: $\Delta CFS = \Delta \tau - f (\Delta \sigma - \Delta p)$

With time, the increase in ΔCFS goes deeper along the fault and propagates along the southeast side of the fault, which is consistent with the seismicity propagation.

Monitor structure response: ambient noise

We use single-station correlation functions to monitor the structure velocity change after the injections.

Use 11-month-long continuous waveform from station WHAR.

Use Moving-Window Cross-Spectral (MWCS) to calculate the relative velocity change.

Relative velocity change: dv/v

0.5-1Hz:
➤ Lower frequency band shows longer velocity decrease.

1-3Hz:
➤ Higher frequency band could recover more quickly.

Conclusions:

- Spatial and temporal evolution of permeability affects the fault response to fluid injection.
- Damage zones create a conduit-like system to diffuse pore pressure along faults and transport fluids, and pressure elevations, to deeper levels.

Related paper:

Yehya, A., Yang, Z., & Rice, J. R.(2018). "Effect of fault architecture and permeability evolution on response to fluid injection", *Journal of Geophysical Research: Solid Earth*, 123. <u>https://doi.org/10.1029/2018JB016550</u>

Structure response can be monitored to provide more evidence to track underground flow.

Research supported at Harvard by the NSF-EAR Geophysics Program (Grant EAR-1315447) and by the NSF Materials Research Science and Engineering Center (Contract DMR-0820484)

