

Quantification of location errors for mining induced seismicity in New Ollerton, UK, using 3D Monte Carlo body wave tomography

C. Roy¹, A. Nowacki¹, X. Zhang², A. Curtis² and Brian Baptie³

- 1 School of Earth and Environment, University of Leeds
- 2 School of Geoscience, University of Edinburgh, U.K
- 3 British Geological Survey, Edinburgh, U.K

REMIS – Reliable Earthquake Magnitudes for Induced seismicity

Short-coming in existing methods of magnitude estimations

- Need to know velocity model and source locations
- Trade-off between velocities and and source locations

<u>Goal</u>: Joint hypocenter-velocity inversion and calculation of interlinked probability distributions and uncertainties of earthquake locations and seismic velocities, magnitudes

=> Monte Carlo Markov Chain approach

The rj-McMc algorithm

Initial randomly choosen model **m**

- Transdimensional
- hierarchical

Propose a new model **m**'

- Perturbation of velocity/position of cells or
- Perturbation of source location
 - or cell Birth/death

Accept or reject

m

Calculate raypaths & Travel times for **m**'

m = m'

Synthetic test

- 15 stations
- * 50 sources
- 750 P&S Travel times + 2 % gaussian noise
- Source locations (x,y,z,t) + Gaussian noise
 - ~ 1.5 million sampled models
- Burn-in of 500.000 models
- 20 Markov chains
- Constrained/unconstrained source locations

Unconstrained/constrained source locations

- Start at randomly chosen position in the model space
- wide priors
- Each chain initializes the source at different locations
- Start from a position close to a given location

2

З

4

5

- Narrow priors, e.g +- 1 km in x,y,z
- Assume source locations are already well known

Synthetic test – constrained sources

Synthetic test – Results

P&S Traveltimes

Traveltime differences calculated T_m - T_{obs} for models after the burn-in for all 20 chains

Schatzalp 2019 – 8

Source locations

Inversion of real data – Thoresby Colliery Case study

Earthquakes 2014

- 0.1 km < depth < 2.6 km
- 0.3 < M_L < 2.3
- 7 stations ; 61 earthquakes

- Constrained sources
- 20 Markov Chains
- 500.000 models burn-in ; ~ 2 million sampled models

Data example

S-wave arrivals

P-wave arrivals

New Ollerton – Depth slices

Schatzalp 2019 – 12

New Ollerton – Vertical slices

Source location examples

Conclusions

- McMC body wave tomography for two synthetic tests with <u>constrained/unconstrained</u> source locations
 - more realistic uncertainties for unconstrained inversion

- Application to coal mine with <u>constrained source locations</u>
 - two fast velocity perturbations (as a result of the source constrains ?)

Thank you !

Synthetic test –

Synthetic test –

Synthetic test – Results

unconstrained

constrained

Source locations – Synthetic test

New Ollerton sources – xy

New Ollerton sources – xz

