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Mohr-Coulomb approach is “0D”:
• Injection is local, reactivation is global.
• Stress distribution is key: non-local effects (e.g., Viesca & Rice,2012; Garagash & 

Germanovich, 2012).

Friction of interface is not a constant material (Ben-David et al., 2011)
• Stress distribution along the fault?
• Unknown of the fluid pressure leading to fault reactivation.

Stress/pore pressure distribution depends on: 
• injection rate
• permeability/hydraulic diffusivity (and its P dependence !).

Fluid-induced fault reactivationBasic concept

If fault reactivates: 
• rupture velocity?
• Rupture length?

Potential damage
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• triaxial experiments on saw-cut Westerly 
Granite and low permeability Andesite.

• Very smooth (ground) surface.

• Stress relaxation conditions: lock

• Piston at given stress, then inject.

• Pc = 30; 60 & 95 MPa, Q = 90% of static
friction

• Injection rate: 1, 10, 100, 1000 MPa/min.

Stress-relaxation experimentsExperimental set-up
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Slow injection rate Fast injection rate

Injection experimentsExperimental set-up









Slow injection rate Fast injection rate

Injection experimentsExperimental set-up

The larger the injection rate, the larger the fluid pressure (effective friction)  leading to instability









[Passelègue et al, GRL,2018]

Large injection rate, or low fault permeability: high pore pressure excess for reactivation

Influence of injection rate and stressFluid-induced reactivation



Fluid pressure distribution along the faultFluid-induced reactivation
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• Input: fluid pressure in injection site
• Inversion of the fluid pressure in the borehole

• Ouput: Evolution of the hydraulic diffusivity, Pf distribution

2D diffusion model:
(See poster M. Almakari) 

Hydraulic diffusivity enhanced by slip events, and effective stress drop!

Inversion of fluid pressure profileFluid-induced reactivation






Fluid-induced reactivation Influence of fluid pressure heterogeneities



𝑃𝑃𝑓𝑓(from profile inverted)
�𝜏𝜏0(from strain gages array)

Fluid-induced reactivation Influence of fluid pressure heterogeneities



Fault reactivates close to expectations. What about the nature of seismicity?

𝑃𝑃𝑓𝑓(from profile inverted)
�𝜏𝜏0(from strain gages array)

Influence of fluid pressure heterogeneitiesFluid-induced reactivation
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Fast ruptures observed for high initial stress and/or strong fluid pressure heterogeneity?
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Fast ruptures observed for high initial stress and/or strong fluid pressure heterogeneity?

Influence of pressure heterogeneitiesNature of seismicity

Dynamic events:     Large/long nucleation CR> Vr > 180 m/s 
Slow slip events:        Small nucleation Vr≈ 𝟎𝟎.𝟏𝟏𝟏𝟏𝒎𝒎/𝒔𝒔



Control from initial state of stress (τ0 and Pf)Nature of seismicity

Work in progress:

Nucleation is complicated Propagation is not? (LEFM) 
Freund 1990; Svetlisky et al., 2018
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𝜏𝜏02
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𝜋𝜋𝜋𝜋/2(1 − 𝜗𝜗2)
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Work in progress:

Nucleation is complicated… Propagation is not? (LEFM) 

Explains our experimental results!

𝜏𝜏0 𝑃𝑃𝑓𝑓 𝑉𝑉𝑟𝑟

Freund 1990; Svetlisky et al., 2018
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Work in progress:

Nucleation is complicated… Propagation is not? (LEFM) 

Explains our experimental results!

𝜏𝜏0 𝑃𝑃𝑓𝑓 𝑉𝑉𝑟𝑟 𝐿𝐿𝑐𝑐
Problem: Value of stress in nature?

Freund 1990; Svetlisky et al., 2018



Take home messageNature of seismicity

• Injection-induced slip: non-local problem.
• High injection rates or low permeability fault! local overpressures.
• Pore fluid diffusion far behind slip and/or rupture front.
• Local fluid overpressure drives stress transfer and entire fault reactivation!

• Rupture speed depends of the stress acting along the fault!
• What about rupture length? Also predictable from LEFM!
• Nucleation processes are complicated in experiments: Finite fault size problem!
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Thanks for your attention
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