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MOTIVATION

Energy partitioning during EQs



Outline

EQs in the lab.

Heat generation — How hot does it get?
(Aubry et al. GRL 2018)

With water, pressure matters
(Acosta et al., Nat. Comm. 2018)

HF radiation, where the waves come from?
(Marty et al. GRL 2019)
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Stick-Slip as a Mechanism for Earthquakes
W.F.Brace; J. D. Byerlee

Science, New Series, Vol. 153, No. 3739. (Aug. 26, 1966), pp. 990-992.
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Fig. 1 (left). Force-displacement curve for the axial direction in a cylindrical sample of Westerly granite. Small diagram above
the curve shows schematically how stress was applied to the sample. The sample fractured at point FR forming the fault which is
shown as a dotted line in the small diagram. The exact shape of the curves during a stress drop (such as ab) is not known and
is shown dotted. P is confining pressure. Fig. 2 (right). Same as Fig. 1 except that the sample contained a sawcut with
finely ground surfaces as shown schematically (small figure) by a heavy line.
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PREFACE:
A SHORT GEOPHYSICAL HISTORY OF WESTERLY GRANITE

C. H. Scholz

A number of rocks have achieved a kind of fame
in geophysical circles because of their frequent

(...)

It is ironic that many who use the well-wora quip
"geophysicists think that the crust is made of
Westerly granite" are probably unaware that
Westerly granite was once designated by the U.S.
Geological Survey and the Carneglie Institution as
'G-1', the type rock of the continental crust
[Fairbairn et al., 1951].

AGU Geophysical Monograph Series, EQ source mechanics, 1986
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Frictional heat produced inferred from
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Heating efficiency

Aubry et al. GRL 2018 Ewt (Y 177)
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When looking at heat, rupture becomes more efficient
with increasing sliding



Frictional heating is heterogeneous

Temperature maps of the interface during frictional sliding
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Transition from asperity to bulk surface melting

Microstructural evidences of melting

45 MPa

Aubry et al. GRL 2018
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Near fault shear stress (MPa)

Stick-slips and stress drops
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Near fault shear stress (MPa)

Stick-slips and stress drops
the fluid version
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Shear stress drop (MPa)
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Stick-slips and stress drops
the fluid version
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Magnification = 10,000x

Stick-slips and stress drops
the fluid version

re (pf= 1 MPa)
Ire (pf = 25, 45, 70 MPa)
1 P
Se £ P 2 Eorakiig ]
Magnification = 10,000x %
2 S i}
5
:
. [1]
=N
Magnification = 10,000x
101 1 | T PP BT | 1 1]
© 500 1000 10° 10! 10° 0 1000 2000
P (kg.MT7) Cow (KJ.KG".K™) L, (kJkg™)

Acosta et al. Ncomms, 2018



Outline

EQs in the lab.

Heat generation — How hot does it get?
(Aubry et al. GRL 2018)

With water, pressure matters
(Acosta et al., Nat. Comm. 2018)

HF radiation, where the waves come from?
(Marty et al. GRL 2019)



Rupture velocity and HF radiation
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Passelegue et al., Science 2013



Rupture velocity and HF radiation
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Length (80 mm)

HF radiation

Back projection of the HF content locates at rupture front
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Energy budget summary
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Fault friction

Normalized slip (m)

Mw [-4 , -3] earthquakes, AT THE LABORATORY SCALE
IN THE RIGHT o-P-T CONDITIONS

Transition from multiple asperities (low seismic efficiency, low rupture speed, small
stress drop & low HF radiation) to a single asperity (high seismic efficiency, high stress
drop, high rupture speed, & high HF radiation).



Conclusions

During sliding, heat generation is limited to asperities. Flash melting on asperities
(sliding velocities >m/s) drives the discrepancy between static and dynamic stress drop and
generate high velocity ruptures.

Flash melting is inhibited at large pore fluid pressure (thermodynamics of water matters).

Faster (Supershear) ruptures are accompanied by HF radiation, which originates at (or
close to) rupture front (dynamic off-fault damage triggering and/or breakdown zone).
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Measuring Heat

Heat diffusion model - Thermocouple data inversion
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Heat dissipation...

Mapping the interface by the help of amorphous carbon

Calibration made with specific coated samples (other than these for experiments) heated in an oven during 10 s.
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* The more advanced the process of carbonization and the higher the ratio Hy/H,.
* We are aware of kinetic problem (10 s heating) compared to the duration of stick-slip (20 us).



Heating efficiency
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Rupture becomes more efficient with increasing sliding
because heat is bounded
by melting (or phase change) temperature and heat diffusion



Static vs. dynamic stress drops

Passelegue et al. JGR 2016
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