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Injection induced earthquakes

Injection
Well

What is the fault response to fluid pressure
| stimulation?

Large scale fluid injection can generate
overpressure and induce seismicity by
reactivating existing ancient faults.

Important to characterize:

Type of slip behavior
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Modified after
Davies et al., 2013



Fault Reactivation vs. Frictional Slip Stability

The increase In fluid pressure along a fault will decrease the effective normal stress
that clamps the fault in place favoring fault reactivation
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Fault Reactivation vs. Frictional Slip Stability

Upon reactivation slip behavior is described via the Rate- and State- Frictional Properties:

(1) potentially seismic (Velocity Weakening)

(2) aseismic (Velocity Strengthening)
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Injection induced earthquakes

Outstanding questions:

 What is the coupling between hydrological and mechanical
properties of a simulated fault during fluid pressurization?

 How fault rheology and frictional stability are influenced by
fluid pressurization?



Experimental set-up
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Experimental set-up
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Shear Stress (1), MPa

Results
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Creep Experiments
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Creep Experiments
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Slip Velocity [mm/s]

Creep Experiments - slip behavior upon fluid pressurization
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Creep Experiments - Fluid diffusion
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Creep Experiments - Fault zone structure
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Shear Stress (1)

Conceptual model for fault zone deformation
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Shear Stress (1)

Conceptual model for fault zone deformation
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Do fault gouge always fails by slow slip upon fluid pressurization?
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Summary

» Fluid pressurization can promote slow but accelerated fault slip in a fault
gouge that is characterized by velocity strengthening behavior (i.e. aseismic
creep) acting as an efficient weakening mechanism.

* The observed fault slip behavior is the result of the complex interaction
between hydrological, frictional and structural properties of the fault gouge.

 Accelerated aseismic creep can transfer stress to adjacent fault patches that
are prone to earthquake nucleation providing a mechanism to trigger seismicity.
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