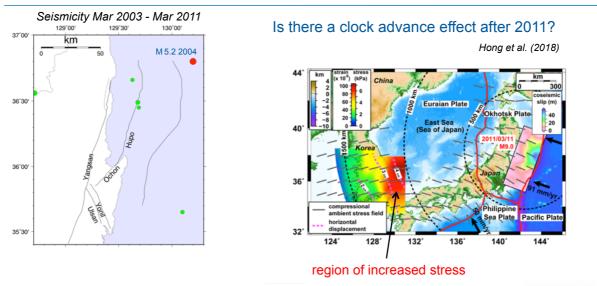


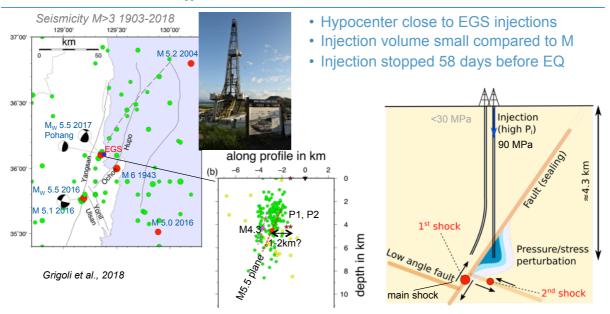
3rd Induced Seismicity Workshop, 5-9 March 2019 Schatzalp, Davos, Switzerland



The 2006 M_L 3.4 Basel induced by deep hot rock stimulation


e.g. Bachmann et al. (2012)

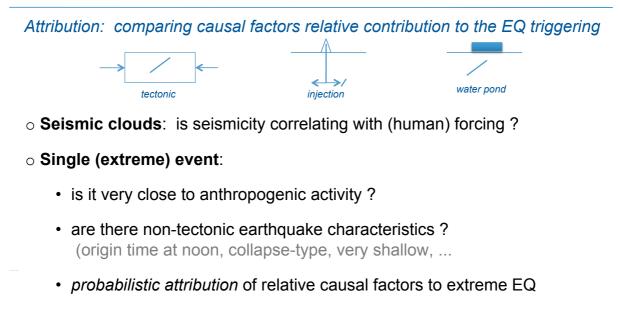
S-Korea – far-distance stress shadow from 2011 Tohoku M_w 9 ?



HELMHOLTZ

S-Korea – far-distance stress shadow from 2011 Tohoku M_W 9?

Pohang 2017 M_w 5.5 – induced, triggered or natural ?

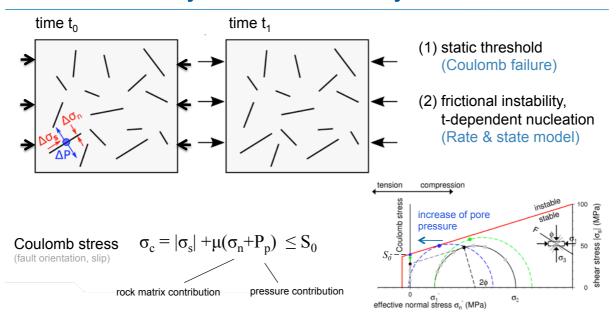


Pohang 2017 – a key test for attribution models

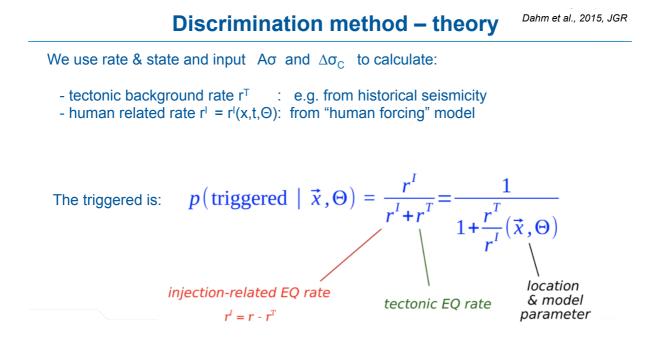
- ① Tectonic stress rate increased after the Tohoku 2011
- ② Pohang EQ is shallow and close to injection operation (but "too large" and 58 days after shut-in)

HELMHOLTZ

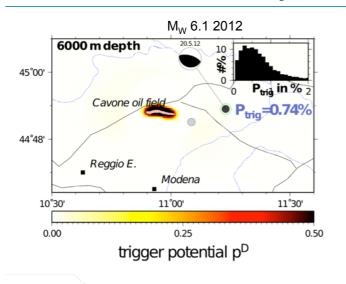
Discrimination: approaches


Extreme event probabilistic attribution

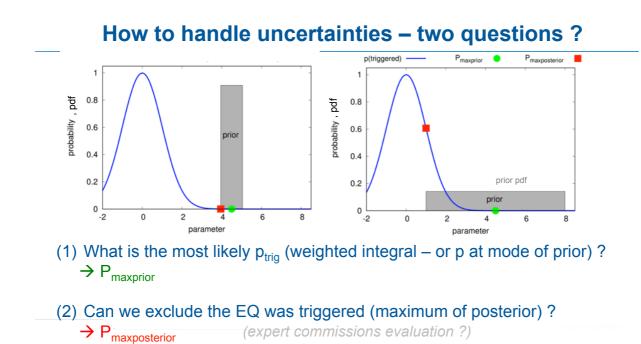
Causal factors:(1) tectonic Coulomb stress rate do_c/dt


(2) anthropogenic stressing

Probabilistic attribution (adapted from climate research):


- a) physics-based seismicity model to assess relative contribution
 - (1) theoretical EQ rate r^{T} from tectonic stressing
 - (2) theoretical EQ rate r^I from human action
- b) assigning **statistical confidence** that the EQ was human-triggered

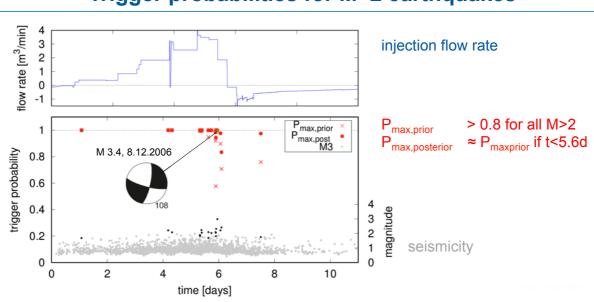
Physics-based seismicity model



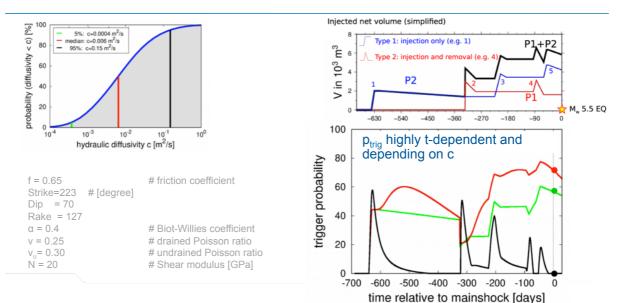
Case study: Emilia oil field

P_{trig} = < 1%

Dahm et al., 2015



Example: short-term water injection – ΔP_f diffusion


Case study: 5 days stimulation beneath Basel

	0040 -	Dahm et al. (2015), Eq.(1):	(1) tectonic	(3) assumed parameter uncertainties			
density	030 -	$\dot{\tau} = b \ 10^{a+9.1+(1.5-b)M_{max}} / A D \ (1.5-b)$	stressing rate	Parameter	Mode	$\left[min,max\right],\pm std$	D
0.0 de	0025 -			EQ relative location SED catalogue			
probability o	0015 -			x, z, z in $[km]$	SED catalog	± 0.1	n
	0010 -	lognormal fit: mean=243.7 mode=115.3	EQ mechanism				
				see Deichmann & Giar	rdini (2009)	$\pm 10^{\circ}$	n
	stressing rate [Pa/yr] (2) diffusivity from			Rock and fluid parameter			
	800	D = 0.01 m ² /s	growth of seismic cloud	Frict. coeff. f	0.68	[0.5, 0.85]	u
	700	D = 0.03 m ² /s		Biot-Willies α	0.5	[0.1, 0.9]	u
	600	D = 0.05 m ² /s		Skempton α	0.5	[0.1, 0.9]	u
	600			Poisson ν (drained)	0.245	[0.20, 0.29]	u
-	500	-		Poisson ν_u (undr)	0.3	[0.29, 0.31]	u
2		000		Rigidity \mathcal{N} [GPa]	17.5	[5,30]	u
distance [m]	400			Fluid viscosity $\eta \left[Pas \right]$	$3.5 \cdot 10^{-4}$	$[3,4] \cdot 10^{-4}$	u
dist	300			Permeability $\kappa [mD]$	0.1	[0.05, 0.5] 90% conf.	lg
	200			Diffusivity c $\left[m^2/s\right]$	0.03	s±0.01	
	100			Seismicity model parameter			
	0			frict. value $A\sigma$ [MPa]	0.03	[0.01, 0.05]	u
	(0 2 4 6 time [days]	8 10	tect. stress $\dot{\tau} \left[Pa/yr \right]$	186.7	see figure	lg

Trigger probabilities for M>2 earthquakes

Example: the late M_w 5.5 Pohang earthquake

Summary of case studies											
Event	Pmaxprior	P _{maxposterior}	Reference								
- quasi-static reservoir depletion -											
M _w 4.3 2001 Ekofisk M _w 4.4 2004 Rotenburg M _w 6.1 2012 Emilia	>99% ≈70% <1%		Dahm et al. (2015) Dahm et al. (2015) Dahm et al. (2015)								
- time-dependent "injection" -											
M_W 6.1 1976 Tjörnes fracture zon M_W 3.4 2006 Basel	ne >90% 99%	- >95%	Passarelli et al. (2011)								
M _w 5.5 2017 Pohang			in prep.								

Probabilistic attribution approach is flexible to be applied to different problems

Conclusion

 ✓ Expert panel reports usually assess the P_{maxposterior} (assess whether triggering can be excluded assuming it was triggered)

✓ The likelihood to be triggered (mode, P_{maxprior}) is smaller than P_{maxposterior}

 \checkmark We suggest to report both measures, as purely statistical bounds are more difficult to communicate