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Introduction

A water reservoir affects the underlying crust
stress state through the poroelastic response
to the weight of the water volume stored and
by the consequent fluid movement.

The artificial lake of Pertusillo in Val d'Agri
(Italy) is one of the known water reservoirs
showing protracted seismic activity for several
years after the initial filling in 1963. More than
800 small magnitude events (ML <3; Mc=1.1)
were located between 2001 and 2013 by a

monitoring network of a local industry operator
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Conceptual model Hydraulic effect

Mechanical effect
The bottom of the lake
is deformed by water-co-
lumn weigth: volumetric
and shear strains genera-
te the pressure evolution,

The bottom of the lake
IS pressurized by water co-
lumn weigth: no volumetric
strains, pressure evolution
depends on permeability k
and specific storage Se
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