
Results  
The following figures compare the slip and pressure 
solutions for different grid resolutions, with and without the 
shear relaxation for injection at the centre of a single 
fracture. 
 

 

 

 

 

 

 
 
 
Further, the following figures depict how the failure 
propagation and the L1-error evolves for slip solutions 
using different relations between grid and time step size. 

 

 

 

 

 

 

XFVM with shear relaxation is now used for a fracture 
network. The following figures depict the displacement 
solutions in the matrix domain and the shear slip on the 
fracture nodes.  

 

 

 

 

 

 

 

 

 

The seismic moment magnitude plotted against the 
frequency of occurrence follows the Gutenberg-Richter law 
with grid converged b-values. 

Conclusion 
A XFVM method in the HFR framework is employed and 
the grid dependent time step size is formulated for injection 
induced failure in order to obtain grid converged solutions. 

Reference:- R. Deb, P. Jenny : Modeling of shear failure in 
fracture reservoir with porous matrix. ECMOR 2016 

Abstract 
A numerical modeling framework to simulate shear failure in 
fractured reservoirs has been developed using a finite 
volume method. The Coulomb friction law is applied to 
describe the failure criterion. In order to obtain the fluid 
injection induced shear failure in a grid and time step size 
independent manner, it is shown that a time step size which 
scales with the square of fracture segment size is 
necessary. Alternatively, the Prakash and Cliffton law 
provides grid and time step size convergent slip solutions 
using a numerical time step size, which resolves the shear 
relaxation timescale. 

Slip Elements 
 

 

 

 

 

 

  

 
 
 
In the HFR framework, fractures are represented as low 
dimensional manifolds in a higher dimensional matrix 
domain. The displacement solution is given by 

                                                                                         (1) 

                                                                                         (2) 

 

Further, an extended finite volume method (XFVM) is used 
along with frictional constraint relations on the fracture 
segments [1]. 

Grid Convergence 
The pure mechanics problem is grid convergent. However, 
pressure induced shear failure simulations have an 
additional restriction on the time step size to obtain a grid 
converged failure propagation in the context of the Coulomb 
friction law:-  

                                                                                          (3) 

                                                                                          (4) 

An alternative is to use the Prakash and Cliffton law, where 
maximum shear strength on a fracture segment relaxes 
over a timescale to the Coulomb friction value as given 
below :- 

                                                                                          (5) 

                                                                                          (6) 
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field. Now the fluid injection into the fractures decreases the net compressive force on each of the
failure segment via increasing fluid pressure. This, therefore allows the failure segment to reach the
shear failure criterion without any change in mechanical displacements at each of the node. Once
failure limit is reached i.e. to say that shear traction forces are equal to or greater than the maximum
limit provided by equation (4c), a new equilibrium equation is solved using an additional slip
solution on the failure segment along with the linear elastic solution in the domain. The governing
dynamics of this slip solution is via a slip or slip rate dependent friction law. However this is a
fast process compared to the external boundary conditions or fluid flow timescale. So therefore,
here rather than resolving the dynamic process of this slip solution, a final static equilibrium is
calculated. This static equlibrium is obtained via seeking solution for the slip of the failing segment
such that the shear traction force on the failure segment is restored to a new limit provided by
the dynamic friction coefficient and the compressive force. This new limit causes a stress drop on
the failing fracture segment because of the fact that dynamic friction coefficient is less than static
friction coefficient. For the slip solution along the fracture manifold, following additional equation
is solved along with the linear system from finite volume method.
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The equation (13a) represent the new equilibrium or locking state after fracture failure which
undergoes irreversible slip in order to restore this new static equilibrium. The term ⌘V (s

x

, s
y

)

represent the radiation damping effect of slip velocity over the timescale of failure. As explained by
Rice ([16]), a convolutional effect of kinetic energy release or the elastodynamics can be considered
on the finally established new force equilibrium on the failing fracture segment. A more accurate
slip velocity solver algorithm includes a strategy to resolve this slip velocity along with a non-linear
slip velocity dependent dynamic friction coefficient. But this strategy is computationally expensive
as it would require to resolve the timescale of slip event. A relatively simple and computationally
cheap solution algorithm will be to solve for final slip solution and assuming a constant stress drop
based on static/dynamic friction law. In this regard, either the convolution effect of velocity in the
equation (13a) can be neglected, or this slip velocity can be modeled as average velocity of slipping
over the timescale of slip events and is given as
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The equation (16) approximates the average velocity over a mechanical timescale of ⌧m which is
an estimate of total time for slip event. The constant µ

d

is the dynamic coefficient of friction in
the equation (13a) and is assumed to be constant. The equation (13b) constraints the slipping in the
direction of shear traction force which is obtained from the equation (4b). The shear traction and
compressive forces depend on the stresses applied on the boundary of the node which is aligned with
the fracture segment. Therefore a relation between this stresses and irreversible slip is sought. This
relation inturn also couples the linear elastic solution on the nodes with slip solution. So therefore
an extended linear system is required to be solved now which includes the total displacement on
the nodes and slip solution on the fracture segment. The relation between stresses and slip solution
finally boils down to the relation between displacement derivatives or strains with the slip solution.
The argument used to decide this relation is that any elastic strain used to calculate the stress-strain
relation for new equilibrium must be obtained by removing irreversible strain from total strain.
This restricts calculation of any cross derivatives across the faces for the equation (8a) and (8b) via
removing relative irreversible slip between the nodes from the total relative displacement across the
faces. Numerically the argument removes the slip solution from the relative displacement between
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