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The 2006 Basel EGS
textbook example
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Very reasonable results

obtained quite systematically
with very SIMPLE MODEL
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Linear relationship y=AV
v Empirical

v'ay, equivalent to
seismogenic index X
(Shapiro et al.)

Normal diffusion

v'5 out of 7 time series best
described by exponential
function (stretched exp.
better in 2 cases)

v'Same principle as for
tectonic aftershocks
(Mignan, GRL 2015)

Source: Mignan et al. (sub.)



This model can be based on simple physics, using GEOMETRY instead of poroelasticity

Poroelastic approach

Fluid flow in Induced

o porous medium kgl seismicity

Fluid injection

overpressure

Biot’s theory

Geometrical approach

Fluid injection

overpressure
N-C PAST\ Induced
postulate seismicity

Description length I
Source: Mignan (NPG 2016)




This model can be based on simple physics, using GEOMETRY instead of poroelasticity

Poroelastic approach

Fluid injection Fluid flow in Induced
overpressure > porous medium e seismicity
Biot’s theory
Geometrical approach
v' Algebraic model (INTEGRABLE in
Fluid injection analytical risk management, e.g.,
overpressure closed-form TLS)

postulate seismicity

v' Few physical parameters
Induced (PARSIMONIOUS)

v' Same physics as tectonic
earthquakes (UNIFYING)

Description length I
Source: Mignan (NPG 2016)




REDUCTIONIST GEOMETRIC approach with STATIC stress top-down loading as driver

v' Opposite to complexity theory, which is holistic (stem of “complex” means “intertwined”),
dynamic, controlled by bottom-up triggering (& critical points)

v' Postulate. Seismicity is strictly categorized into three regimes of constant spatiotemporal
densities — background &,, quiescence 6. and activation o, (with 6. < 6,<9d,) — and
depends on the static stress step function &(c) with Ao. the background static stress
amplitude range

0_ ifo < —Ao,
6(0) =16, ifo < |Ao,|
6y ifo > Ac,

v' Building of “seismicity solids”: 2(t)
o(r,t) X —=
v" Permanent static stress field r 1
Z(t)\3
T.(f) <
(®) (Aa*)

v Seismicity solid envelope

u(t) < 8kr, (t)®
v Seismicity rate function



Originally coined NON-CRITICAL precursory accelerating seismicity theory (N-C PAST)

Simulations
of precursory
seismicity from
algebraic model

Observations
(2009 L’Aquila
mainshock)
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“N-C PAST Postulate” also explains parabolic spatial front & linear relationship y=AV

1. Parabolic front of induced seismicity = Activation solid driven by borehole overpressure

1
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More complicated cases (stem of “COMPLICATED” meaning “FOLDED™)

1. Sum of two pressure fields, e.g. overpressure + underpressure in production phase
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More complicated cases (stem of “complicated” meaning “folded”)

1. Sum of two pressure fields, e.g. overpressure + underpressure in production phase

Source: Mignan (NPG 2016)

2. Sum of overpressure field + remnant of permanent static stress field of an active fault

Source: Shapiro et al. (GRL
2006), KTB 2004/5 anisotropy

Stress o

Injection overpressure field

---- Historical tectonic field

(=)
o ‘\\
b —— Superposition of fields
\\ Induced seismicty
© \  spherical cloud centered
g N \  on borehole
‘\
\
\
\
\\
8 a A\ Induced seismicity
o \\ clustered on existing
D elongated fault structure
\
-\
\\
S ., .
S amplitude Ac’ \\ !
\‘-\ ,: Local tectonic fault
! with static memory
W ! (historical “ghost”
N \ ! static stress field)
o N
o i
Q el o o o ) e i e o i 4
()
| | | | |
0.0 0.5 1.0 1.5 2.0 25 3.0

Distance r



Note on Aftershocks & post-injection relaxation

v" Omori law (power law) ill-defined: ¢ >0
infers that singularity occurs before
mainshock (Kagan & Houston 2005)

A stretched exponential function fits
aftershocks better than a standard power-
law (Mignan, GRL 2015); similar for post-
injection cases (against complexity?)

Subdiffusion explainable by STATIC trap
model (Grassberger & Procaccia 1982) with
stretching explained by TOPOLOGY of traps
(fractal fault network)
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New horizons in the understanding & mitigation of induced seismicity: N\
physics, risk, communication

ETH A, Milgnen
Eidgendssische Technische Hochschule Zirich amaud.mignan@sed.othz.ch

Swiss Federal Institute of Technology Zurich

The rise in the frequency of i is posing societal and legal challenges to geo-energy projects (e.g., Enhanced Geothermal Systems, EGS).
Existing tools to assess and control such risk are insufficient. To resolve this issue, induced seismicity is studied from three fronts: (1) the physics of seismicity, both tectonic and
induced, is poorly understood. We move away from the Complexity trend (bottom-up triggering, criticality) to a reductionist approach (top-down loading, non-criticality) to explain
the main laws of seismicity. For the case of induced seismicity, both the linear flow rate-induced seismicity rate relationship and the parabolic induced seismicity spatial front are

from simple on a static stress field (Mignan, 2016). It follows that the simple statistical laws that describe induced seismicity time series can be

related to only 2 physical & g static stress range). (2) With a physical model that can be described algebraically, a data-driven adap-

tive forecasting system can be run that is computationally cheap. Decision variables can also be derived from such model to define a traffic light system (TLS) in respect to a

given safety criterion (Mignan, Broccardo, Wiemer, Giardini, “When is icity too risky ?", it (3) Although the security criterion can be respected (in av-

erage) with the use of a TLS, the known of the makes the future of an EGS project uncertain. Based on the EGS costs (mainly drilling), expected

profits (S/kWh) and risk curves ob!alned from a priori acﬂvsl-on valuos one can decide during the planning phase if the project should go ahead or not. By communicating risk
and how the or rational ions can be made.

(1) Moving away from Complexity Theory: “Seismicity Solid"” geometry
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(3) Decision-making under uncertainty (Mignan et al., 2015; Mignan, sub.)
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AGAINST Complexity Theory (stem of complex meaning “intertwined”)

v Holistic — Bottom-up triggering — Dynamic — Critical
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Local interactions lead
to system behaviour

Source: Mignan (Tectonophysics 2011)



AGAINST Complexity Theory (stem of complex meaning “intertwined”) @

v Holistic — Bottom-up triggering — Dynamic — Critical

v Self-Organized Criticality (SOC) gives power-law freq.-size distr.

Bak-Tang-Wiesenfeld model Analogue of / o
Gutenberg-Richter law? / / / /

Local interactions lead
to system behaviour

Source: Mignan (Tectonophysics 2011) 10 L 10000



AGAINST Complexity Theory (stem of complex meaning “intertwined”) @

v Holistic — Bottom-up triggering — Dynamic — Critical

v Self-Organized Criticality (SOC) gives power-law freq.-size distr.

v’ Critical Point Theory (SOC+memory) gives temporal power-laws / -/
Analogue of ° i [/
. Precursory Accelerating i Local interactions lead
Seismicity? ‘_‘ to system behaviour
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AGAINST Complexity Theory (stem of complex meaning “intertwined”) @

v Holistic — Bottom-up triggering — Dynamic — Critical

v Self-Organized Criticality (SOC) gives power-law freq.-size distr.

v’ Critical Point Theory (SOC+memory) gives temporal power-laws / -/
Local interactions lead
to system behaviour

v' Propositional fallacy. the fact that critical processes lead to
power-laws does NOT mean that the presence of power-laws
Is the proof that critical processes are in play. Indeed:
GEOMETRY also explains GR law (King 1983) & precursors
(Mignan 2012)
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v Holistic — Bottom-up triggering — Dynamic — Critical

v Self-Organized Criticality (SOC) gives power-law freq.-size distr.

v' Critical Point Theory (SOC+memory) gives temporal power-laws /
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Local interactions lead
to system behaviour

v" Propositional fallacy. the fact that critical processes lead to
power-laws does NOT mean that the presence of power-laws
IS the proof that critical processes are in play. Indeed:
GEOMETRY also explains GR law (King 1983) & precursors
(Mignan 2012)

v" Movable Cellular Automata mimic rock lab experiments

v' CAwhere laws of physics are implemented (e.g., Hooke’s
law, friction’s laws)

v Extrapolating lab results to crust behaviour makes sense in
Complexity paradigm (bottom-up process, scale-invariant)

Source: Wikipedia
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Holistic — Bottom-up triggering — Dynamic — Critical
Self-Organized Criticality (SOC) gives power-law freq.-size distr.
Critical Point Theory (SOC+memory) gives temporal power-laws

Propositional fallacy. the fact that critical processes lead to
power-laws does NOT mean that the presence of power-laws
IS the proof that critical processes are in play. Indeed:
GEOMETRY also explains GR law (King 1983) & precursors
(Mignan 2012)

Movable Cellular Automata mimic rock lab experiments

v' CAwhere laws of physics are implemented (e.g., Hooke’s
law, friction’s laws)

v Extrapolating lab results to crust behaviour makes sense in
Complexity paradigm (bottom-up process, scale-invariant)

v In terms of GEOMETRY: can we really extrapolate
results from a confined cylindrical rock sample to a

spherical layer with free surface (crust)? Different
TOPOLOGIES
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Local interactions lead
to system behaviour
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Source: Wikipedia



