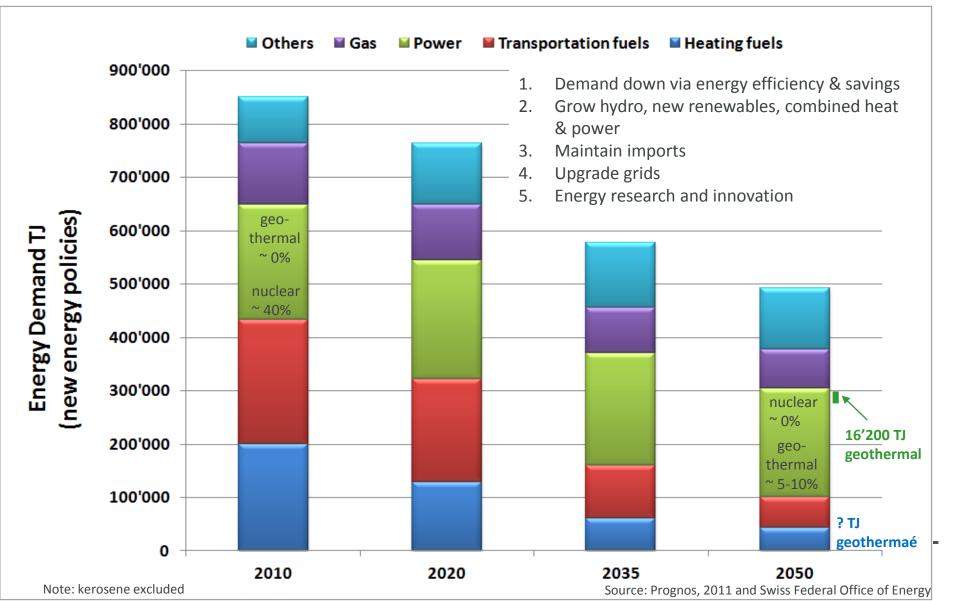


Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Bundesamt für Energie BFE Office fédéral de l'énergie OFEN Ufficio federale dell'energia UFE Swiss Federal Office of Energy SFOE

Geothermal Energy in Switzerland – Recent policy developments

Gunter Siddiqi / Swiss Federal Office of Energy

Schatzalp Workshop, Davos 17 Mar 2017


KEY FOR SUPPORT FOR GEOTHERMAL: REVISIONS OF A NUMBER OF ACTS (ENERGY, CO₂, NUCLEAR ENERGY,)

- June 2011: Federal Council (government) with approval of parliament decides to develop a new energy strategy
- Trigger: Fukushima plus convergent trends (cost reduction renewables, climate change, political instability in Middle East and North Africa...)
- Sept 2013: Gov't sends bills to parliament
- Features: exit nuclear when no longer technically safe, up efficiency & savings, decrease fossils, increase renewables
- 30. Sep 2016: both chambers approve the Acts (optional referendum if 50'000 signatures are collected within 3 months against the Acts)
- Nationalist conservatives successfully launched collection of 68'000 signatures

-> 21 May 2017 Swiss population will vote

- In parallel, a people's initiative (100'000 signatures) called for the shut-down of nuclear after 45 years of operation
- 45 years means that 3 of 5 plants to be shut in by the end of 2017
- But, Swiss voters rejected «accelerated» phase-out vs. «orderly» phase-out on 27 November 2016 with a solid majority of 54%.
- In parallel, 1 February 2017: Federal Administration launches the consultation process of ordinances (implementation rules of policy support measures)
- Subject to 21 May 2017 results: all will enter into force on 1 January 2018

SWITZERLAND'S ENERGY STRATEGY 2050: DEEP GEOTHERMAL ENERGY HAS A ROLE TO PLAY

HEADLINES: 1ST SET OF MEASURES TO IMPLEMENT SWITZERLAND'S ENERGY STRATEGY 2050

No new nuclear (ea. of the 5 existing ones [24 TWh in 2015] retire at end of their technical/safe lifetime)

New renewables (excl. hydro) targets for electricity production:

2015: 2.8 TWh; 2020: 4.4 TWh

2035: 11.4 TWh

Energy consumption relative to the year 2000:

2000: 854 970 TJ, <u>2015: 838 360 TJ</u>

2020: -16% and 2035: -43% (rel. 2000)

Of which electricity consumption:

2000: 52.4 TWh, <u>2015: 58.2 TWh</u>

2020: -3% and 2035: -13% (rel. 2000)

CO₂ targets remain unchanged:

-20% by 2020 rel. to 1990

Revision of CO2-Act has been initiated New target: -50% by 2030 rel. to 1990 -30% domestic and -20% foreign **Geothermal energy policy measures** (target enforcement date: 1.1.2018)

Geothermal guarantee scheme (until 2031)

Increase coverage to 60% of total sunk subsurface development cost, if the subsurface does not live up to expectations

Exploration support scheme (until 2031)

Max. 60% towards pre-spud exploration activity and first well to confirm the presence of a reservoir

Feed-in tariffs (15 years) for projects with first power before 2024

Support for direct use geothermal energy (to 2025)

CHF 30 mln p.a. for upstream exploration and development activities that lead to uptake of geothermal energy for direct heating

Geothermal in the "national interest"

Cantons should accelerate planning and permitting

FINANCING POLICY MEASURES

Energy Act Art. 33 Contributions to exploration and Geothermal guarantees

 Program financed by a max. CHF 1 per MWh of electricity transmitted via the national high voltage grid (~ 60 TWh) -> at most CHF 60 mln per year

Energy Act Art. 19 Feed-in tariffs for geothermal energy

Installed Capacity	Hydrothermal (CHF / MWh)	Enhanced/Engineered Geothermal Systems (CHF / MWh)
≤5 MW	400.0	475.0
≤10 MW	360.0	435.0
≤20 MW	280.0	355.0
>20 MW	227.0	302.0

Average retail / consumer end price (generation + transmission + policy support): CHF 200 / MWh Average annual consumption 4 person single family home: ~ 5 MWh Cap of all grid surcharge available for all RES programs: CHF 23 / MWh

SWISS FEDERAL DISPATCH ON RESEARCH AND INNOVATION (PERIOD 2017-2021)

- Dispatch: policy instrument that governs funding of federally sponsored research and innovation
- Energy research is a pillar in Switzerland's Energy Strategy 2050 (from fundamental to pilot+demonstration) & ~CHF 300 mln p.a.:
 - 2013: Geothermal CHF 9.4 mln.
 - 2014: Geothermal CHF 11.5 mln.
 - 2015 and later: no statistics available, but strong upward trend
 - Swiss Federal Office of Energy is sole programmatic funding agent, with applied research funding levels decreasing < CHF 1 mln but piloting and demonstration up (~ 3 mln)
- Key for geothermal energy research and development: Swiss Competence Center for Energy Research – Supply of Electricity (SCCER-SoE) operative since 2013

TOPICS COVERED BY THE SCCER-SOE

WP1 Geo-energies: Deep Geothermal Energy

T1.1 Resource exploration and characterization
T1.2 Reservoir stimulation and engineering
T1.3 Hydrothermal resources and geofluids: exploitation and storage
T1.4 Geo-data infrastructure and analysis

WP3 Innovation agenda

T3.1 Innovative technologies T3.2 Computational energy innovation

WP4 Future supply of electricity

T4.1 Risk, safety and societal acceptance
T4.2 Global observatory of electricity resources
T4.3 Socio-economic-political drivers
T4.4 Joint SCCER Scenario & Modeling Initiative

WP2 deals with hydropower

CHALLENGES OF STIMULATION

BENOIT VALLEY (UNI NEUCHÂTEL) & BRICE LECAMPION (ÉCOLE POLYTECHNIQUE DE LAUSANNE)

From science to engineering What processes are activated during How to **control** what processes are stimulation ? activated during stimulation ? Which processes are most efficient for reservoir creation? What parameter is **required** to How to measure reservoir make engineering decisisons? parameters at depth? To what precision ? We need to develop stimulation design workflow for deep geothermal reservoirs, applicable at the New modeling tools and techniques different project stage and including uncertainty / risk analyses framework.

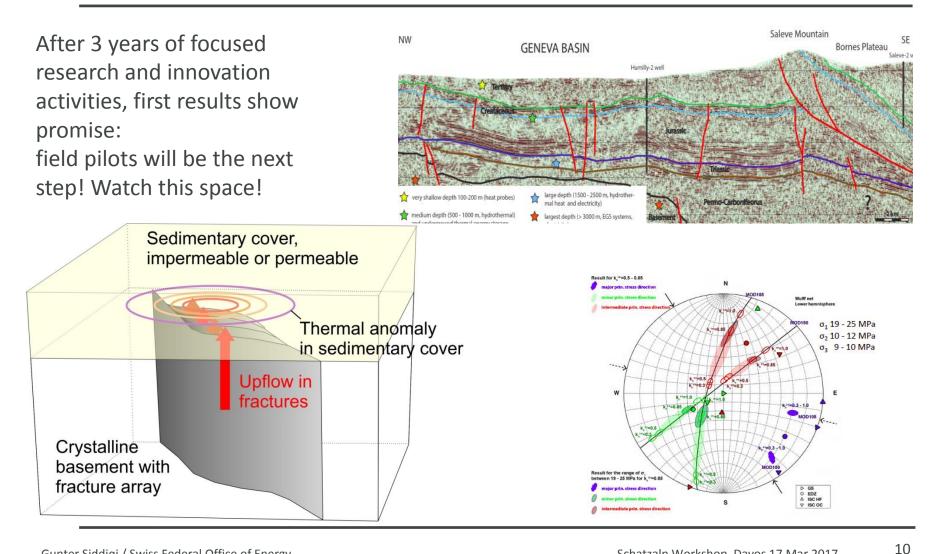
POLICY RELEVANT OUTCOMES RELATED TO INDUCED SEISMICITY FROM:

Government Treaty of USA, Iceland, Switzerland, Australia and New Zealand: Government-Industry Platform to coordinate and pursue joint research and innovation via Working Groups

Stefan Wieder (CH) is lead of the WG Induced Seismicity

Under the auspices of the International Energy Agency IEA: Australia, France, Germany, Iceland, Italy, Japan, Mexico, New Zealand, Norway, Korea, Switzerland, UK and USA; European Commission; Spanish Geothermal Technology Platform (Geoplat) and ORMAT Technologies, Inc Topic lead: Induced Seismicity (Chris Bromley, New Zealand)

IEA: Australia, USA, Norway, the Netherlands, the European Commission, Switzerland


Workstream on unconventional resources (fracking, imaging, modeling, understanding the subsurface)

Europe (sponsored by the European Commission): 16 geothermal energy research and innovation program owners and managers from 13 countries and their regions work on coordinating research and innovation – and also on induced seismicity

THANK YOU FOR LISTENING

