TWO PHYSICS-BASED MODELS FOR ESTIMATION OF MAGNITUDES OF FLUID-INJECTION-INDUCED EARTHQUAKES

Martin GALIS, Jean-Paul AMPUERO, P. Martin MAI , Frédéric CAPPA

we focus on integrating fracture mechanics into estimates of magnitudes of injection-induced earthquakes
our goal is to determine how large a rupture can grow under different conditions
rather than modeling individual cases, our aim is to understand general principles
driven by underlying physics

estimation of the precursor length

laboratory experiments
revealing arrested ruptures

Rubinstein, Cohen and Fineberg (2007)

LEFM estimates
of the laboratory results

Kammer, Radiguet, Ampuero and Molinari (Tribology Letters, 2015)

assumptions and concept of our approach

pore-pressure distribution inside a cylindrical reservoir with no-flow boundaries
(Lee at al., 2003)

assumptions and concept of our approach

- circular crack
- axisymmetric stress drop
- static stress intensity factor averaged along crack rim is approximated by the expression for tensile cracks
- details of weakening inside the process zone are ignored the rupture arrest criterion is based on fracture toughness K_{c}

condition for rupture arrest

Griffith crack equilibrium criterion

$$
K_{0}(R)=K_{c}(R)
$$

to discriminate
stable and unstable equilibrium

$$
\frac{\partial\left(K_{0}-K_{c}\right)}{\partial R}<0
$$

> ruptures initiated by overstressed regions with different shapes

dimensionless area of overstressed region
conditions for rupture arrest are solved numerically

- pore-pressure related parameters only control shift in time
- shape of "rupture arrest area vs injection time" curves, including $A_{\text {arr-max }}$ at transition to runaway ruptures, depends only on fault-related parameters

II. analytical model

conditions for rupture arrest are solved analytically with additional assumptions

- pore-pressure perturbation inside the reservoir is approximated by a point load/force
- average pore-pressure perturbation inside the reservoir is approximated as proposed by McGarr, 2014:

$$
\Delta p=\kappa \frac{\Delta V}{V}
$$

With these assumptions, we can estimate maximum seismic moment and magnitude before transition to runaway ruptures as a function of injected volume

$$
M_{0}^{\text {max-arr }} \doteq \frac{0.4255}{\sqrt{\Delta \tau_{0}}}\left(\frac{\kappa \mu_{d}}{h}\right) \Delta V^{3 / 2}=\gamma . \Delta V^{3 / 2}
$$

II. analytical model

background figure from
Viesca and Garagesh, 2015

- using fracture mechanics, we have derived a physical model for estimating rupture arrest size
- numerical solution of rupture-arrest condition provides insight into roles of various parameters of the reservoir-fault system
- analytical solution of further simplified problem provides relation between $M_{0}{ }^{\text {max-arr }}$ and injected volume, similar to McGarr, 2014, however, while McGarr's estimate predicts slope of 1, we find slope of $3 / 2$, which seems to be consistent with observations over a broad range of injected volumes and magnitudes

THANK YOU

