Schweizer Service Si Servizio S Swiss Seis

Schweizerischer Erdbebendienst Service Sismologique Suisse Servizio Sismico Svizzero Swiss Seismological Service

Why ML and MW for small earthquakes scale as 1.5:1 instead of 1:1

Nicholas Deichmann

Swiss Seismological Service, ETH Zürich

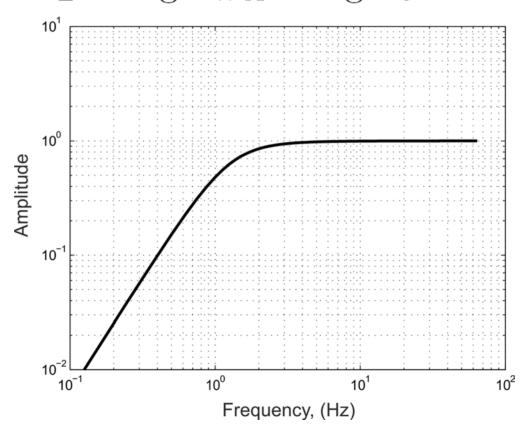
Schatzalp Workshop on Induced Seismicity 2017/03/17

Outline

- In theory ML and MW should scale 1:1
- In reality they scale about 1.5:1
- Simulations with Q confirm the 1.5:1 scaling
- Theory with Q shows why
- The added effect of the W-A response
- Consequences for Gutenberg-Richter

Basic principles:

Richter: $M_L = \log A_{WA} - \log A_0$



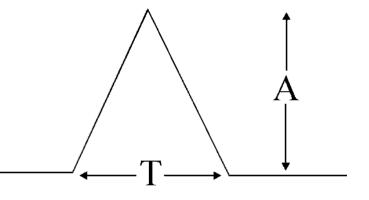
Frequency response of the Wood-Anderson seismometer

Basic principles:

Richter:
$$M_L = \log A_W - \log A_0$$

$$(1) \quad M_L = \log A - \log A_0$$

The far-field displacement pulse is equivalent to the apparent source-moment-rate function

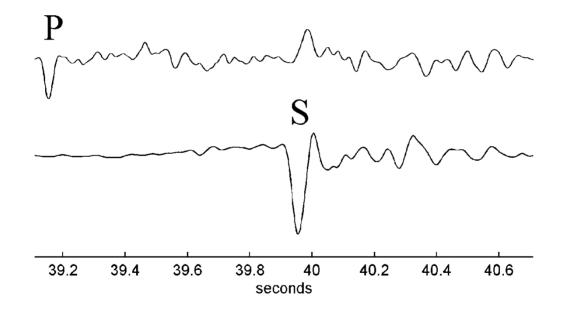


Seismic moment:
$$M_0 \propto \int_0^T u^{SH}(\tau) d\tau = c_s AT$$

T

 $(2) \quad \log A = \log M_0 - \log T - \log C$

Basel M_L 3.4 event recorded by borehole sensor OTER1 at 500 m.



Instrument corrected displacement rotated to max P- and S-amplitude.

Pulse duration: $T = L/v_a$

L = the source dimension (source radius for a circular fault) $v_a =$ apparent rupture velocity

$$(3) \quad \log T = \log L - \log(v_a)$$

Seismic moment: Static stress drop:

$$M_0 = \mu S \bar{D}$$
$$\Delta \sigma_s = K \mu \frac{\bar{D}}{W}$$

(4) W and L fault width and length $a_r = W/L$ aspect ratio $W = a_r L$ and $S = a_r L^2$ $\Delta \sigma_s = \frac{K}{a_r^2} \frac{M_0}{L^3}$ $\Delta \sigma_s = \frac{1}{3} \log M_0 - \frac{1}{3} \log(\Delta \sigma_s) + \frac{1}{3} \log K - \frac{2}{3} \log a_r$

(4)
$$\log L = \frac{1}{3} \log M_0 - \frac{1}{3} \log(\Delta \sigma_s) + \frac{1}{3} \log K - \frac{2}{3} \log a_r$$

(3) $\log T = \log L - \log(v_a)$

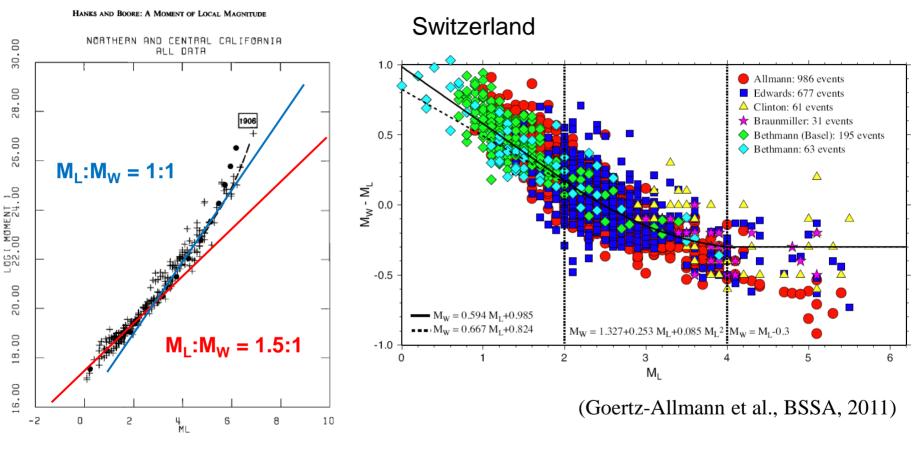
$$(2) \quad \log A = \log M_0 - \log T - \log C$$

$$(1) \quad M_L = \log A - \log A_{0}$$

(5)
$$M_L = \frac{2}{3} \log M_0 + \frac{1}{3} \log(\Delta \sigma_s) + \log(v_a) - \frac{1}{3} \log K + \frac{2}{3} \log a_r - \log C - \log A_0$$

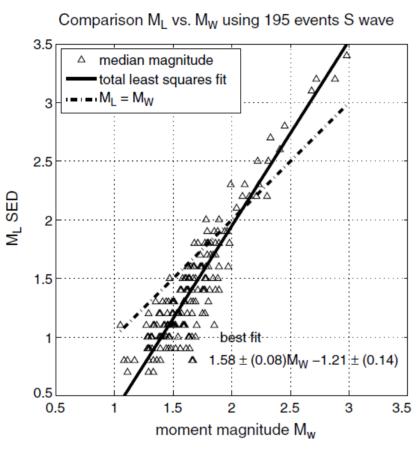
 $M_L = \frac{2}{3} \log M_0 + B \qquad \longleftrightarrow \qquad M_W = \frac{2}{3} \log M_0 - 6$

In a perfectly elastic medium and ignoring the Wood-Anderson response, ML and MW of self-similar earthquakes should scale 1:1



(Hanks & Boore, JGR, 1984)

(Numerous other similar observations are documented in the literature)

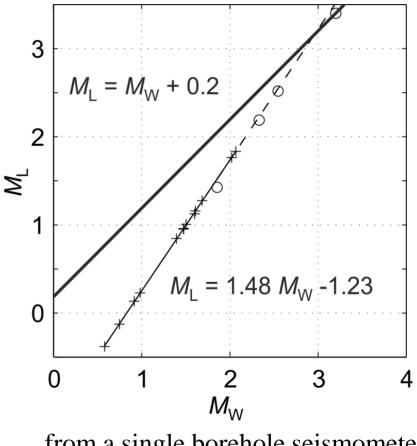


Basel: induced seismicity 2006-2007

(Bethmann et al., BSSA, 2011)

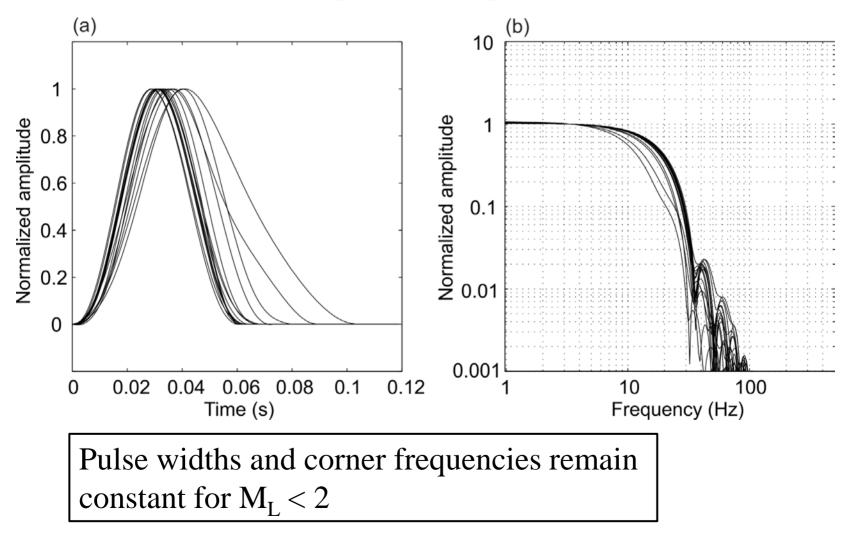
Basel: cluster of closely co-located events with similar focal mech.

www.seismo.ethz.ch

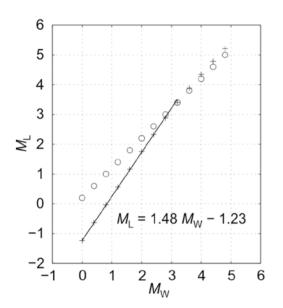


from a single borehole seismometer (MATTE at 553 m depth)

Pulse widths and displacement spectra of Basel cluster



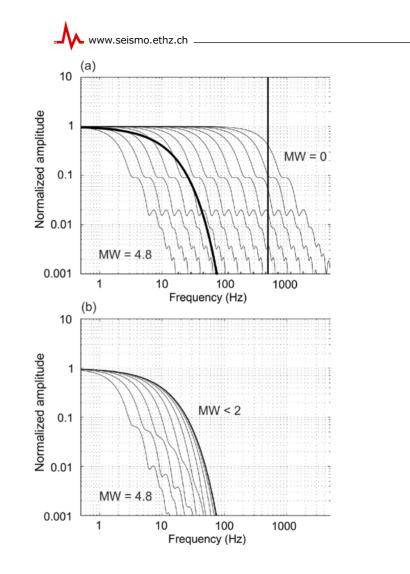
Synthetic moment-rate simulations of observations at borehole station MATTE in Basel



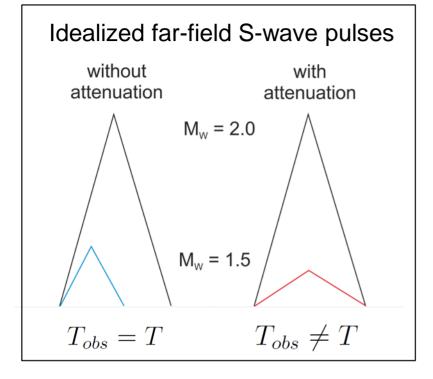
including attenuation

$$|A_Q(f)| = e^{-\pi t^* f}$$
$$t^* = \frac{x}{cQ}$$

Qs = 80, from spectral ratios (Bethmann et al., GJI, 2012)



Circular source model with variable stress drop and rupture velocity (Deichmann, BSSA, 1997)



$$T = L/v_a$$

$$T_{obs} = T + kt^*$$

$$kt^* >> T$$

$$T_{obs} = T + kt^* \approx const.$$

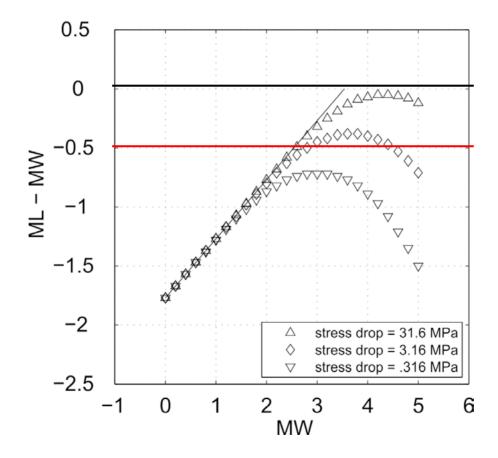
Why 1.5:1?

$$\log A = \log M_0 - \log T - \log C$$
$$\log A = \log M_0 + const.$$

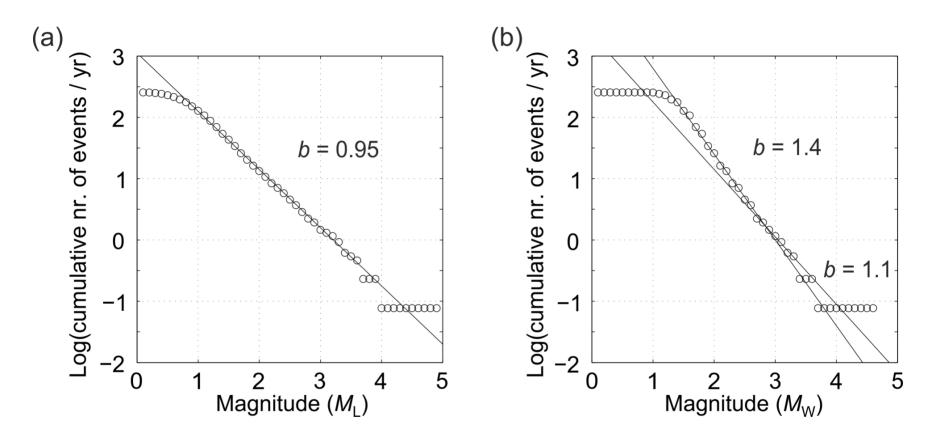
$$\log M_0 = \frac{3}{2}M_W + 9$$

$$M_L \propto \frac{3}{2} M_W$$

The effect of the Wood-Anderson response (with Q) for different stress drops



Consequences for G-R relations



3318 earthquakes from SW Switzerland (2002-2014)

www.seismo.ethz.ch

Conclusions

Large earthquakes: $T_{obs} \propto M_0^{1/3}$ $(f_c \propto M_0^{-1/3}) \implies M_L \propto M_W$ Small earthquakes: $T_{obs} = const.$ $(f_c = const.) \implies M_L \propto \frac{3}{2}M_W$

- In practice, magnitudes of small and large earthquakes are like apples and pears
- The G-R relation based on M_L lacks physical justification
- The G-R relation based on M_W leads to different b-values for small and large earthquakes we risk using the number of apples on an apple tree to estimate the number of pears on a pear tree
- For more insight into this we need A Wood-Anderson-free magnitude Native M_w values over a sequence of earthquakes with M_w from 0 to 6

(for details see Deichmann, BSSA, 107, 2, 2017)