

Schatzalp workshop - Davos March 2017

On the variety of post-deformation phenomena in abandoned mining districts: Insights from seismic source analysis

Kinscher, J. (INERIS), Contrucci, I. (INERIS), P. Dominique (BRGM), E. Klein (INERIS), , Bigarre, P. (INERIS)

Challenges of hazard assessment in abandoned mine districts

-> Imply strong challenges of long-term hazard assessment especially when get flooded

(uncontrolled fluid extraction/injection experiment):

-> Most relevant hazards in terms of risk for local population

- Pollution/contamination hazard

- Hazard of ground and underground instabilities

1. Surface deformation: Landslides, sinkholes, subsidence (surface collapse hazard)

2. Underground limited deformation: Underground collapse,

fault reactivation (seismic hazard)

Surface deformation phenomena (Lorraine, NE France)

Ø

Post-mine deformation in Lorraine

Abandoned underground mines in France => Subsidence and surface collapses events

Catastrophic consequences, e.g. Auboué (1996): 70 damaged buildings, 150 family resettlements

Geotechnical monitoring of **non-reducible**, **high risk** zones including microseismic survey

pour un développement durable

Cerville Buissoncourt experimentation site

Introduction and motivation

Induced cavity collapse (2009) from controlled brine pumping

Monitoring

Cavity growth (2008)

Surface crater of final collapse (2009)

- In-situ geotechnical surveys: GPS, Extensometers, Tachemeter, Piezometer, Sonar, Gamma ray etc.
- Microseismic network ⇒ many 10k events

Cerville project: swarming events

Swarming example

-Complex swarming events with dense event superposition

-Swarming as a signature of => Progressive cavity roof failures (caving)

Cerville project: seismic source analysis

- Majority of events (> 80%) related to NW-SE striking thrust faulting mechanism (Kinscher et al 2016)

Radiation pattern NW-SE dip slip

Observed

average amplitude ratios (30-90 Hz)

of 15,000 events

Station lower hemisphere 0.3 log 0.2 log 0.1 0 0.0 V/P -0.1 P -0.2 -0.3

Synthtetics (dip-slip) average amplitude ratios

strike 150; dip = 45° ; rake= 90°

0.6 0.5 0.4 0.3 0.2 0.1 0.0

Og 10 SV wave SV wave P wave

Cerville project: Reactivation of pre-existing heterogeneities?

- stability in thrust fault orientation (NW-SE) fits to

Cerville project: Reactivation of pre-existing heterogeneities?

Cerville project: triggering from distant earthquakes ?

- Collapse related mircoseismic activty correlates in time with passage of wave trains (body and surface waves) of an Indonesian M7 quake

-Induced dynamic stress changes seem sufficient to trigger final rupture in overburden

Cerville project: presence of aseismic processes

Microseismicity VS In-situ extensometer data (overburden)

-Presence of aseismic processes ? (stress memory ?)

-Aseismic processs may play an important role during surface collapsing/subsidence events

- 15 years seismic monitoring in Lorraine
=> 0 microseismic events!
=>Even though surface
subsidence processes
partially detected

Underground deformation phenomena (Provence, SE France)

Gardanne coal mine, Provence SE France

Gardanne coal mine: hydrological model

- Hydrological model suggest :
- -> complicated flooding pattern
- -> main water supplies from the east
- -> take around 6 month to circulate

 \Rightarrow No continuous flow in mine working ? \Rightarrow Damming effects ?

Gardanne coal mine: interaction seismicity vs mining water level

Gardanne coal mine: interaction seismicity vs mining water level

Gardanne coal mine: seismic source analysis

Gardanne coal mine: preliminary interpretation

Gardanne coal mine: implication for seismic hazard assessment

Concluding remarks

Ø

Post-mining cases Lorraine :

- Dominance of surface deformation phenomena (aseismic?)

Insights to complexity of surface collapsing events from Cerville collapse experiment : => Interaction of local caving dynamics, preexisting structures, triggering from distant earthquakes and aseimsic processes

Insights to complexity of seismic hazard assessment related to underground deformation phenomena in Provence post-mining case: => Mine workings provoke modification of hydrological system reactivate faults whose activity seems today strongly linked to climatic/meteorological conditions

pour un développement durable

To solve these challenges,

necessity to share knowledge and research from different case studies and disciplines

Thank you for your attention!

Data integration to: Anthropogenic hazard platform

https://tcs.ah-epos.eu/

GISOS

Géosciences pour une Terre durable

GFZ

POTSDAM

brgm

