
Daniel Roten (SDSU),  Kim B. Olsen (SDSU), Steven M. Day (SDSU)

PSHA Workshop, 5—7 September 2017, Lenzburg, Switzerland

The Role of Fault Zone Plasticity in Controlling Extreme Ground 
Motions



Fault Zone Plasticity and Distributed Deformation

• Stresses at rupture front exceed strength of crustal rock, 
leading to permanent deformation near the fault 

• Physical Limit to peak ground velocity (Andrews, 2007; 
Duan & Day, 2010)
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• Plastic yielding leads to distributed 
surface deformation 

•Formation of a flower-like 
damage zone (Ma, 2010)

M 7.7 Balochistan (Pakistan) 
earthquake (Zinke et al., 2014)



• Distributed deformation may explain 
Shallow Slip Deficit (SSD, i.e. decrease of 
slip towards the free surface).
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• 2D dynamic rupture simulations 
from Kaneko & Fialko (2011) 
predict a Shallow Slip Deficit of 
up to 15% 

• 2—4 times lower than observed 
SSD (30—60%)
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Scope of this study: 
Perform 3D nonlinear dynamic rupture simulations to 
1. Reproduce SSD and surface deformation observed during  past 

earthquakes 
2. Predict how this nonlinearity affects ground motions in future 

earthquake scenarios
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Dynamic Rupture Simulations with Fault Zone Plasticity

• AWP-ODC staggered-grid split-node FD code 
(Dalguer & Day, 2007) with slip-weakening fault 
friction 

• CVM-S4.26+GTL to prescribe media properties 
• Drucker-Prager yield condition used to model 

inelastic off-fault deformation
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Dynamic Rupture Simulations with Fault Zone Plasticity

M 7.3 Landers Earthquake

M 7.7 Southern San Andreas Scenario

• AWP-ODC staggered-grid split-node FD code 
(Dalguer & Day, 2007) with slip-weakening fault 
friction 

• CVM-S4.26+GTL to prescribe media properties 
• Drucker-Prager yield condition used to model 

inelastic off-fault deformation
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presence of joints 

• Uses Geological Strength Index (GSI) to describe 
degree of fracturing
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How to Define Rock Strength in Dynamic Rupture Simulations?

GSI=75 GSI=50 GSI=30

blocky disintegrated deformed, 
folded

GSI=63

very blocky 

Very Good Good Average Poor
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Effect of Plasticity on Shear Zone Width

Average of simulated displacement 
(rupture model C)
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Quantifying Off-fault Deformation (OFD)

Observed off-fault deformation (Milliner et al., 2015):
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Observed off-fault deformation (Milliner et al., 2015):

Main fault  
strand field  
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Simulated off-fault deformation:

COSI-Corr 
displacement

Total 
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Split node 
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Summary and Conclusions

Landers earthquake simulations 

•3D dynamic rupture simulations of the M 7.3 
Landers earthquake underpredict SSD and 
OFD in the linear case.   

•However, nonlinear simulations for moderate 
quality rock reproduce both the inferred SSD 
of 30—60% and the observed OFD of 46 ± 
10%. 

•Fault zone plasticity is needed to generate 
dynamic rupture simulations that are 
consistent with observations
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Southern San Andreas scenario 

•Simulated spectral accelerations obtained for a 
linear medium overpredict GMPEs by more 
than one standard deviation at near-fault 
locations. 

•SAs obtained from nonlinear simulation are 
more consistent with GMPEs. 

•Plasticity acts by truncating the tail of the 
frequency distribution, reducing the 
occurrence of extreme ground motions. 

•Ground motions are sensitive to strength of 
rocks in the fault damage zone, which 
underlines the need to properly prescribe 
strength parameters for deterministic ground 
motion prediction.


