

The Role of Physics-Based Ground Motion Models in Non-Ergodic Site-Specific PSHA Studies

Luis A. Dalguer and Philippe Renault

Hazard and Structural Analysis

Swissnuclear, Switzerland

Disclaimer:

This presentation is intended for educational purposes only and does not replace independent professional judgment. Statements of fact and opinions expressed are those of the presenter and, not necessarily the opinion or position of swissnuclear, its sponsors or its committees. Swissnuclear makes no representation or warranty, express or implied, regarding the content, accuracy, completeness or fitness for use for any purpose of the information presented.

PSHA Workshop, Lenzburg, Switzerland, 5-7 September 2017

Ergodic and non-ergodic process

Ergodic: The statistical properties of a process can be deduced from a representative singles sample. It means, any sample of the process is completely representative of the process as a whole.

Non-ergodic: Processes for which this property does not hold.

Current practice in PSHA

- An ergodic assumption is commonly made in Probabilistic Seismic Hazard Assessment (PSHA)
- Usually empirical GMPEs are used.

$$\ln(Y) = f_{src}(M, \dots) + f_{path}(R, M, \dots) + f_{site}(Vs_{30} \dots) + \Delta$$

1964-2017:

432 empirical GMPEs -> PGA 277 empirical GMPEs -> PSA (Douglas, 2017, http://www.gmpe.org.uk)

Site-specific PSHA for critical infrastructures

- Must consider details of best available information of region-specific geology, site, seismic sources, etc.
- > Ideal environment for non-ergodic PSHA.
- Nevertheless, in practice such models are not used and a site-specific nonergodic PSHA has not been performed
- Current practice is usually dominated by empirical GMPEs that have been developed most of the time using dataset from other places except from the site of interest.
- Those GMPEs pass for some "adjustments" (e.g. "Host to Target") to make them applicable
- The physics-based models that take into account the finite-fault rupture, the geological and site conditions are ideal candidate models for fully non-ergodic studies because they can be constrained with all the available information of the area of interest.

Site-specific PSHA

GMPEs:

- Usually is ajusted to predict for reference rock (Vs > 1000m/s).
- Post processing calculations are done to account for local soil response
- Do not capture complexities of source, path and site

Physics-based models:

- Can include the whole system in a single model (source, path and site)
- Capture complexities of source, path and site

Combination of Empirical GMPES and Physics-based models

Example of Site-specific PSHA for NPPs

PRP project in Switzerland

Hazard is controled by Mw ~ 6 and R <= 20km (near fault)

Limitations of empirical GMPEs

Limitations of empirical GMPEs

GMPEs predict earthquakes similar to events from their database only

Evolution of empirical GMPEs

SWISSNUCLEAR Nuclear Energy Section of swisselectric

Abrahamson and Young (1992): $\ln y = a + bM + d\ln(r+c) + eF$

Abrahamson et al (2014)

If R_{y0} not available:

$$T_{5} = \begin{cases} 1 & r_{jb} = 0\\ 1 - \frac{r_{jb}}{30} & r_{jb} < 30\\ 0 & r_{jb} \ge 30 \end{cases}$$

$$f_{6} = \begin{cases} a_{15} \frac{Z_{TOR}}{20} & Z_{TOR} < 20 \text{ km}\\ a_{15} & Z_{TOR} \ge 20 \text{ km} \end{cases}$$

$$f_{10} = \begin{cases} a_{43} \ln \left(\frac{Z_{1} + 0.01}{Z_{1,ref} + 0.01}\right) & V_{s,30} \le 200 \text{ m/s}\\ a_{44} \ln \left(\frac{Z_{1} + 0.01}{Z_{1,ref} + 0.01}\right) & 200 < V_{s,30} \le 300 \text{ m/s} \end{cases}$$

* GMPEs are becoming very complex to use!!

 $V_{s,30}^* = \{ V_1, V_{s,30} \ge V_1 \}$ 1500 $T \leq 0.5 \, \mathrm{s}$ $\exp\left[-0.35\ln\left(\frac{T}{0.5}\right) + \ln(1500)\right] \quad 0.5 < T < 3\,\mathrm{s}$ $V_1 = \{$ 800 T > 3 s $f_4 = a_{13}T_1T_2T_3T_4T_5$ $\int (90 - dip)/45 \ dip > 30^{\circ}$ $T_1 =$ $\int 60/45$ dip < 30° $(1 + a_{2HW}(M - 6.5))$ $M \ge 6.5$ $\begin{array}{c} 1 + a_{2HW}(M-6.5) - (1-a_{2HW})(M-6.5)^2 & 5.5 < M < 6.5 \\ 0 & M \le 5.5 \end{array}$ $T_2 =$ $(h_1 + h_2(R_x/R_1) + h_3(R_x/R_1)^2 \quad R_x < R_1$ $T_3 = \begin{cases} 1 - \left(\frac{R_x - R_1}{R_2 - R_1}\right) & R_1 \le R_x \le R_2 \end{cases}$ $R_x > R_1$ $T_4 = \begin{cases} 1 - \frac{Z_{TOR}^2}{100} & Z_{TOR} \le 10 \text{ km} \\ 0 & Z_{TOR} > 10 \text{ km} \end{cases}$ $T_5 \quad = \quad \left\{ \begin{array}{ll} 1 & R_{y0} - R_{y1} \leq 0 \\ 1 - \frac{R_{y0} - R_{y1}}{5} & 0 < R_{y0} - R_{y1} < 5 \\ 0 & R_{y0} - R_{y1} \geq 5 \end{array} \right.$ $R_1 = W \cos(\operatorname{dip})$ $R_2 = 3R_1$ $R_{u1} = R_x \tan(20)$ $h_1 = 0.25$ $h_2 = 1.5$ $h_3 = -0.75$

$$Z_{1,ref} = \begin{cases} \frac{1}{1000} \exp \left[\frac{-1100}{4} \ln \left(\frac{s.50}{1360^{4}+570.94^{4}} \right) \right] & \text{for California} \\ \frac{1}{1000} \exp \left[\frac{-5.23}{2} \ln \left(\frac{V_{s.30}^{2}+412.39^{2}}{1360^{2}+412.39^{4}} \right) \right] & \text{for Japan} \end{cases}$$

$$f_{11} = \begin{cases} a_{14} & CR_{jb} \leq 5 \text{ km} \\ a_{14} \left[1 - \frac{CR_{jb} - 5}{10} \right] & 5 < CR_{jb} < 15 \text{ km} \\ 0 & CR_{jb} \geq 15 \text{ km} \end{cases}$$
Regional = $F_{TW}(f_{12} + a_{25}r_{rup}) + F_{CN}a_{28}r_{r}up + F_{JP}(f_{13} + a_{29}r_{rup})$

$$f_{12} = a_{31} \ln \left(\frac{V_{s,30}^{*}}{V_{Lin}} \right)$$

$$f_{13} = \begin{cases} a_{36} & V_{s,30} < 200 \text{ m/s} \\ a_{37} & 200 \leq V_{s,30} < 300 \text{ m/s} \\ a_{38} & 300 \leq V_{s,30} < 400 \text{ m/s} \\ a_{39} & 400 \leq V_{s,30} < 500 \text{ m/s} \\ a_{41} & 700 \leq V_{s,30} < 1000 \text{ m/s} \\ a_{42} & V_{s,30} \geq 1000 \text{ m/s} \end{cases}$$

-The physics of wave propagation are now well developed and well understood

Full physics-based GM models

Dynamic rupture model: The physics of stress and friction at fault interface are also well understood

The earthquake rupt ure can be described as a two-stepprocess:(1) formation of crack and (2) propagation or growth of the crack. The crack tip serves as a stress concentrator due to driving force; if the stress at the crack tip exceeds one critical value, then the crack grows unstably accompanied by a suddenslip and stress drops.

Main Input for dynamic rupture models

The best information of source (faults)

Main Input for dynamic rupture models

Main Input for dynamic rupture models

The best information available of the geological structure and site

Validation of dynamic rupture models (Comparison with empirical GMPEs)

Validation of dynamic rupture models (Comparison with empirical GMPEs of Boore et al, 2014)

4.5

3.5

3

2

1.5

0.5 -10⁻¹

In(5% PSV, cm/s)

swissnuclear

Nuclear Energy Section of swisselectric

(Andrews and Ma, 2016)

Validation of dynamic rupture models

Ground motion of some single events

Very near the fault: Extreme and Reduction of ground motion is observed

(Baumann and Dalguer, 2014, BSSA)

SWISSNUCLEAR Nuclear Energy Section of swisselectric

Request 1: Could you make a prediction in zone A for Mw 7 and distance 20km?

SWISSNUCLEAR Nuclear Energy Section of swisselectric

Request2: Now a prediction in zone A for Mw 7 very near the fault?

Request3: Now please a prediction in zone B?

swissnuclear

Nuclear Energy Section of swisselectric

Request3: Please a prediction in zone B?

GMPEs (Global and ergodic) GMPEs (Now almost for Zone B maybe partially non-ergodic)

Physicsbased GM model (fully non-ergodic)

swissnuclear

Nuclear Energy Section of swisselectric

Request3: Please a prediction in zone B?

GMPEs (Global and ergodic)

GMPEs (Now for Zone B maybe partially non-ergodic)

Physicsbased GM model (fully non-ergodic)

SWISSNUCLEAR Nuclear Energy Section of swisselectric

Conclusions

- Physics-based models are the best models for fully non-ergodic PSHA studies because they account for the effects of fault geometry complexity and 3-D geological conditions
- > 3-D numerical models based on physics will substitute the GMPEs
- Improvement of GMPEs by developing hybrid GMPEs
- > In the future, synthetic earthquakes will cover the earth.

Earthquake Magnitude E	Earthquake Depth (km)	Global Earthquakes 1900 - 2013	
O 7.5 - 8.0	6 70 - 299		
C 8.0 - 8.5	3 00 +		
0 8.5 +	Plate Boundaries		
Active Volcanoes			
	000000		-
			••
••	0000000		000
	0000000		0000
			000000
			24
00000			000000
00000	0000000		0000000
000000	00000000		0000000
000000			
			0000000
000000	0000000		0000000
00000	0000000	,	
00000	0000000		000000
••			
•			
	00		
		••••••••••••••••••••••••	<i>∎</i>USGS

Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations: issues and challenges towards full Seismic Risk Analysis

> Cadarache-Château, France 14–16 May 2018

WS webpage: <u>http://www.institut-seism.fr/en/2nd-workshop-best-psha-ni-may-2018-</u> cadarache-chateau-france/

- -Abstract submission deadline: **30 December 2017**
- -Full paper submission deadline: 28 February 2018
- -Registration deadline (incl. for the field trips): 30 April 2018