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Summary
PSHA is dominated by statistical approaches, where it has been a challenge to 
include more physics-based information. We adopt the statistical framework of 
sequential data assimilation - extensively developed for weather forecasting - to 
e�ciently integrate observations and prior physical knowledge, while acknowl-
edging errors in both sources of information. To proof this concept we perform a 
perfect model test in an analogue subduction zone to probabilisti-cally estimate 
the current and future state of stress and strength on the megathrust interface.

Evensen, G. (2009), Data assimilation. The Ensemble Kalman Filter, Springer. A book recommendable to understand the EnKF’s.
Hori et al., (2014). A Forecasting Procedure for Plate Boundary Earthquakes Based on Sequential Data Assimilation, Oceanography, 27, 94-102.
Werner et al., (2011). Earthquake forecasting based on data assimilation: sequential Monte Carlo methods for renewal point processes, Non-linear Processes in Geophysics, 18, 49-70.

X

TimeAS 1 AS 2 AS 3 AS 4 AS 5 AS 6 AS 7 AS 8 AS 9 AS 10

Propagation
Analysis

a)

σχψ,21

vχ,2

State evolution of:
Truth
Forecasted mean
Ensemble spread
Observation
Analysis
Ensemble members

Propagation of PDE provides forecast Analysis

Model error M Cf
xx

e MT

vχ,2

How to update?
Data y + error Cyy

e

1

pf(Xvχ,2)

2

21

pf(Xσχψ,21)
Covariance matrix Cf

xx
e 

M xVχ,2

σχψ,21

vχ,2

pa(Xvχ,2)

2

21

pa(Xσχψ,21)Bayes’ Theorem

Truth

Truth

b) c) d)

Grid forward model

p(Xvχ,2)

The prior information from the physical model provides the content of the sampled, model error covariance matrix, which contains the information on 
how to relate velocities, stresses, and pressure at the surface to those at the fault and throughout the medium. Velocities and stresses at the surface 
and at the fault thus covary enough for the Ensemble Kalman Filter to provide a meaning full update, despite very large stress data errors. A one point 
update shows the update for one observation follows the least-square �t between  (Fig. 8). A spatially smoothly covarying pattern illustrates why data 
from a single location is enough (Fig. 9).   

A Bayesian framework to include temporal data and its error into a physical model
to estimate hidden, dynamic state variables (and parameters) (Evensen, 2009).  

An Ensemble Kalman Filter is simple and e�cient and works well for high-dimensions.
1. Propagate many models (~ as you have them!) using prior physical knowledge
2. Update using data mis�t and covariances in least-square solution of Bayes’ theorem:

Sequential data assimilation is ... Method for Proof of concept
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Fig. 4: Spatial shear stress recovery. 
During the assimilation, data from the borehole at the yellow dot in the synthetic data model 
in c) has been added to the postseismic forecast in a) to update to b).

Fig. 2: Cartoon explaining Ensemble Kalman Filters in a) time, 
highlighting how ensembles a) forecast the prior, b) relate to the data, and d) form the analysis.
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WITHIN REACH!
- 1 borehole
- limited time

Can we capture stress to �t synthetic analogue seismicity?                       Can we forecast events?
Yes, we can! Even through assimilating a single set of interseismic borehole data, shear stresses distribution can be recovered really well (Fig. 4).

Probabilistic estimates of fault stress and dynamic strength evolution capture the truth exceptionally well (Fig. 5, 7).  

Yes, we can! The systems forecasting ability turns out to be signi�cantly 
better that of a periodic recurrence model to forecast the large events in 
this quasi-periodic sequence (requiring an alarm ~17% vs. ~68% of the 
time to forecast 70% of 21 events) (Fig. 6). 

Fig. 7: Zoom state evolution to distinguish contributions model and data.
How many events do you estimate based on each panel?

Fig. 6: Error diagram to assist decision making on earthquake forecasting.
An alarm sounds when six different velocity thresholds (~event sizes) are passed (differ-
ent lines). We use two different percentages of the assemble to sound an alarm (solid 
black to red, when increasing size, and transparent black to blue).
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Why does this work? How stress and strength at a fault estimated?

Fig. 8: How to update at a hidden state (y) from one observed state (x)?
Ensemble members visualize correlation at one element of covariance matrix Cxx.   
For understanding the complexity of the assimilated data is increased from a) only horizontal 
velocity, without error, to b) include an error, to c) to add the other 4 types, and d) with an error.
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Fig. 9: Information from physical model on how to update  shear stress through space
a-e) transposed influence functions show how shear stress covaries with observations of each type
f-j) scaled Kalman gain shows how to update shear stress due to a 1 std data misfit of each data type

A quantitative and qualitative evaluation shows that meaningful information on 
the stress and strength is available, even when only data from a single borehole is 
assimilated over only a part of a seismic cycle. This is possible, since the sampled 
error covariance matrix contains prior information on the physics that relates ve-
locities, stresses, and pressures at the surface to those at the fault. During the 
analysis step, stress and strength distributions are thus re-constructed to either 
inhibit or trigger events. In the subsequent forward propagation step the physi-
cal equations are solved to propagate the updated states forward in time and 
thus pro-vide probabilistic information on the occurrence of the next analogue 
earthquake. The sys-tems forecasting ability turns out to be signi�cantly better 
than using a periodic model to forecast the large events in this quasi-periodic se-
quence (e.g., requiring an alarm ~17% vs. ~68% of the time to forecast 70% of 21 
events correctly). Although several challenges for applications to natural data 
remain, we believe this �rst step provides an alternative vision on how to statisti-
cally combine data and prior physical knowledge.

Corbi, F., F. Funiciello, M. Moroni, Y. van Dinther, P. M. Mai, L. A. Dalguer, and C. Faccenna (2013), The seismic cycle at subduction thrusts: 1. Insights from laboratory models, JGR, 118, 1483-1501.
van Dinther, Y., et al. (2013), The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models, JGR, 118, 1502-1525
van Dinther, Y., Gerya, T.V., Dalguer, L.A., Mai, P.M., Morra, G., and Giardini, D. (2013b). The seismic cycle at subduction thrusts: insights from seismo-thermo-mechanical models, JGR, 118, 6183-6202.
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Sequential data assimilation has not been applied to estimate states relating to 
seismicity, although pioneering studies use statistical models (Werner et al., 2011) 
and scenario-based, o�-line approaches (e.g., Hori et al, 2014). Hence a proof of 
concept is required. That requires a perfect model test in which synthetic data is 
taken from an additional, numerical model, which represents the truth.

We sequentially assimilate noised, synthetic velocity, stress, and pressure data 
from a single location in a simpli�ed subduction setup (Fig. 3a, Corbi et al., 2013).
Current state-of-the-art errors are downscaled and applied. 

Using an Ensemble Kalman Filter (eq. 1) we update 150 ensemble members of a 
Partial Di�erential Equation-driven seismic cycle model (STM; van Dinther et al., 
JGR, 2013a,b). This visco-elasto-plastic continuum forward model solves Navi-
er-Stokes equations with a rate-dependent friction coe�cient (eq. 2). To estimate 
fault slip or plastic yielding, we thus need to estimate �ve state types in green: 

Fig. 3: a) Model setup simulating an analogue model of a subduction zone (Corbi et al., 2013).
           b) Typical distribution of the estimated five state variable types.
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Fig. 5: State evolution in center seismogenic zone.
After assimilation starts, ensemble statistics (red) track the black truth remarkably well.
Especially event timing, as average levels are known from known parameters.

The corresponding manuscript will be submitted to GJI this week! 
It provides extensive explanations to make solid earth scientisits 
understand sequential data assimilation. 

Forecasting of these sythetic, analogue events works so well, because 
our prior knowledge of physical laws and observations are combined.
Distinct added value is provided with respect to using observations or 
numerical models separately (Fig. 7). 
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