
@module{akkar_2014}

@gmpe{AkkarEtAlRjb2014}

@support{TRT} ACTIVE_SHALLOW_CRUST

@support{IMT} PGA PGV SA

@support{IMC} AVERAGE_HORIZONTAL

@support{StdDev} TOTAL INTER_EVENT INTRA_EVENT

@require{site} vs30

@require{rup} rake mag

@require{dist} rjb

@kernel

void main() {

coeffs C_pga = COEFFS_PGA

real median_pga =

exp(compute_mean(C_pga, rup.mag, rup.rake))

coeffs C = COEFFS

mean = compute_mean(C, rup.mag, rup.rake) +

compute_non_linear_term(C, median_pga)

get_stddevs(C)

}

real compute_mean(coeffs C, real mag, real rake) {

real mean =

C.a1 +

compute_linear_magnitude_term(C, mag) +

compute_quadratic_magnitude_term(C, mag) +

compute_logarithmic_distance_term(C, mag) +

compute_faulting_style_term(C, rake)

return mean

}

void get_stddevs(coeffs C) {

for_all_stddev_types {

if (stddev_type == StdDev.TOTAL)

stddev = sqrt(C.sigma**2+C.tau**2)

else if (stddev_type == StdDev.INTRA_EVENT)

stddev = C.sigma

else if (stddev_type == StdDev.INTER_EVENT)

stddev = C.tau

}

}

real compute_linear_magnitude_term(coeffs C, real mag) {

if (mag <= CONST.c1)

return C.a2 * (mag - CONST.c1)

else

return C.a7 * (mag - CONST.c1)

}

real compute_quadratic_magnitude_term(coeffs C, real mag) {...}

real compute_logarithmic_distance_term(coeffs C, real mag) {...}

real compute_faulting_style_term(coeffs C, real rake) {...}

real compute_non_linear_term(coeffs C, real pga_only) {...}

@const{CONST} c1 = 6.75

@coeffs{COEFFS, 5}

IMT a1 a2 ... sigma tau

pga 1.85329 0.0029 ... 0.6201 0.3501

pgv 5.61201 0.0029 ... 0.6014 0.3311

0.010 1.87032 0.0029 ... 0.6215 0.3526

0.020 1.95279 0.0029 ... 0.6266 0.3555

...

3.800 -1.39790 0.0029 ... 0.6389 0.415

4.000 -1.37536 0.0029 ... 0.6196 0.3566

@fetch{COEFFS_PGA, COEFFS, pga}

A Unified Approach to Formal Description of Ground Motion Prediction Equations

Alexey Gokhberg 1 and Laurentiu Danciu 2

1 FRAGATA COMPUTER SYSTEMS AG, Switzerland, 2 ETH Zurich, Swiss Seismological Service, Switzerland

Introduction

Methods

Design concepts

Applications

Results

Example

We have ported around 25% of GMPE descriptions

available in OpenQuake 2.1 hazard library from Python

to our DSL. All descriptions have been successfully

tested against the OpenQuake GMPE testing suite.

We have used our DSL compiler to convert this GMPE

library into C++ and CUDA. The generated code has

been integrated with the high performance PSHA

framework and deployed for evaluation on the GPU-

enabled massively parallel computer “Piz Daint”

operated by the Swiss National Supercomputing

Centre (CSCS). We ran computations for the 2013

European Seismic Hazard Model (ESHM13, Woessner

et al 2015); the running time on a single computing

node (one NVDIA P100 GPU) is around 7 hours. This

test demonstrates suitability of our approach for

solving large real-life PSHA problems.

We would like to thank Global Earthquake Model

Foundation (https://www.globalquakemodel.org) for

developing and publishing OpenQuake, which we used

as a source for ideas, algorithms, and test cases. We

also thank CSCS for providing “Piz Daint” for the

evaluation of our solution.

We have implemented a source-to-source compiler

that transforms GMPE descriptions into various target

programming languages. The compiler consists of a

common front-end performing platform-independent

analysis of a source code and several back-ends

generating code for various target languages.

Additional code generators targeting different

programming languages and hardware architectures

can be implemented if required.

DSL

C++

C++ & OpenMP

C++ & CUDA

Front-end

Back-ends

We expect that our approach will allow a researcher

who is not an expert in computer science to design

GMPEs that can be used on various state-of-the-art

high performance computing systems.

We have designed a domain-specific programming

language (DSL) for the formal description of GMPE

algorithms. The language defines GMPE logic at a

high level of abstraction. Algorithm descriptions are

independent of implementation-specific details like

architecture of a target computing platform or version

of a hazard computation library.

A GMPE description contains the following sections:

• header;

• list of supported features:

• tectonic region type;

• intensity measure types;

• intensity measure component;

• standard deviation types;

• list of required context parameters:

• site parameters;

• rupture parameters;

• site-to-rupture distances;

• kernel providing a list of functions;

• constant definitions;

• coefficient tables.

Design of GMPE descriptions has been modelled after

OpenQuake. However, unlike OpenQuake, our DSL

conceptually describes computation of the mean and

standard deviation values for a single site and a single

intensity measure type. This approach leads to leaner

code and gives the compiler freedom for implementing

parallel computations in a platform-specific way.

The DSL allows construction of new GMPE

descriptions by combining elements of already

available descriptions for similar GMPEs thus

eliminating redundancy in algorithm codes.

Case 1: Desktop GMPE development toolkit

DSL

DSL compiler

C++
C++

hazard library

Test

application

Case 2: Massively parallel PSHA framework

Controller

(logic trees,

schedule,

output)

Hazard library

GMPE library

C++ & MPI & CUDA

Massively parallel GPU-enabled cluster

Computing nodes

Seismic source

logic tree

GMPE

logic tree

Future research: High performance PSHA as a service

Web portal Job composer Job scheduler
PSHA

framework

Source

catalog

GMPE

catalog

Job

pool

Algorithms for ground motion prediction equations

(GMPE) play a crucial role in implementation of PSHA

computations. Hundreds of such algorithms have been

developed so far and new algorithms are published

every year as result of ongoing research. There is no

commonly accepted standard for the formal description

of GMPEs and researchers use a broad variety of

programming languages for their implementation. As

the result, codes for different GMPEs are frequently

mutually incompatible and often specific for a certain

computing environment.

Furthermore, emergence of new high performance

computing architectures like GPU accelerators or

many-core processors substantially increases

implementation complexity of GMPE algorithms and

we expect that in the future this complexity will grow

with the advent of even more sophisticated computing

platforms. Therefore, there exists a clear need for a

unified approach towards coding formalized GMPE

descriptions, which could be immediately used on a

broad range of modern and future computing systems

without additional programming effort.

Fortran

Java

Python

MATLAB

MPI

OpenMP

CUDA

FRAGATA
Contacts:

alexey.gokhberg@erdw.ethz.ch

laurentiu.danciu@sed.ethz.ch

