
@module{akkar_2014}

@gmpe{AkkarEtAlRjb2014}

@support{TRT} ACTIVE_SHALLOW_CRUST

@support{IMT} PGA PGV SA

@support{IMC} AVERAGE_HORIZONTAL

@support{StdDev} TOTAL INTER_EVENT INTRA_EVENT

@require{site} vs30

@require{rup} rake mag

@require{dist} rjb

@kernel

void main() {

coeffs C_pga = COEFFS_PGA

real median_pga = 

exp(compute_mean(C_pga, rup.mag, rup.rake))

coeffs C = COEFFS

mean = compute_mean(C, rup.mag, rup.rake) +

compute_non_linear_term(C, median_pga)

get_stddevs(C)

}

real compute_mean(coeffs C, real mag, real rake) {

real mean =

C.a1 +

compute_linear_magnitude_term(C, mag) +

compute_quadratic_magnitude_term(C, mag) +

compute_logarithmic_distance_term(C, mag) +

compute_faulting_style_term(C, rake)

return mean

}

void get_stddevs(coeffs C) {

for_all_stddev_types {

if (stddev_type == StdDev.TOTAL)

stddev = sqrt(C.sigma**2+C.tau**2)

else if (stddev_type == StdDev.INTRA_EVENT)

stddev = C.sigma

else if (stddev_type == StdDev.INTER_EVENT)

stddev = C.tau

}

}

real compute_linear_magnitude_term(coeffs C, real mag) {

if (mag <= CONST.c1)

return C.a2 * (mag - CONST.c1)

else

return C.a7 * (mag - CONST.c1)

}

real compute_quadratic_magnitude_term(coeffs C, real mag) {...}

real compute_logarithmic_distance_term(coeffs C, real mag) {...}

real compute_faulting_style_term(coeffs C, real rake) {...}

real compute_non_linear_term(coeffs C, real pga_only) {...}

@const{CONST} c1 = 6.75

@coeffs{COEFFS, 5}

IMT      a1         a2       ...   sigma     tau

pga 1.85329    0.0029   ...   0.6201    0.3501

pgv 5.61201    0.0029   ...   0.6014    0.3311

0.010    1.87032    0.0029   ...   0.6215    0.3526

0.020    1.95279    0.0029   ...   0.6266    0.3555

...

3.800   -1.39790    0.0029   ...   0.6389    0.415

4.000   -1.37536    0.0029   ...   0.6196    0.3566

@fetch{COEFFS_PGA, COEFFS, pga}
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We have ported around 25% of GMPE descriptions 

available in OpenQuake 2.1 hazard library from Python 

to our DSL. All descriptions have been successfully 

tested against the OpenQuake GMPE testing suite.

We have used our DSL compiler to convert this GMPE 

library into C++ and CUDA. The generated code has 

been integrated with the high performance PSHA  

framework and deployed for evaluation on the GPU-

enabled massively parallel computer “Piz Daint” 

operated by the Swiss National Supercomputing 

Centre (CSCS). We ran computations for the 2013

European Seismic Hazard Model (ESHM13, Woessner

et al 2015); the running time on a single computing 

node (one NVDIA P100 GPU) is around 7 hours. This 

test demonstrates suitability of our approach for 

solving large real-life PSHA problems.

We would like to thank Global Earthquake Model 

Foundation (https://www.globalquakemodel.org) for 

developing and publishing OpenQuake, which we used 

as a source for ideas, algorithms, and test cases. We 

also thank CSCS for providing “Piz Daint” for the 

evaluation of our solution. 

We have implemented a source-to-source compiler 

that transforms GMPE descriptions into various target 

programming languages. The compiler consists of a 

common front-end performing platform-independent 

analysis of a source code and several back-ends 

generating code for various target languages. 

Additional code generators targeting different 

programming languages and hardware architectures 

can be implemented if required. 
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We expect that our approach will allow a researcher 

who is not an expert in computer science to design 

GMPEs that can be used on various state-of-the-art 

high performance computing systems.  

We have designed a domain-specific programming 

language (DSL) for the formal description of GMPE 

algorithms. The language defines GMPE logic at a 

high level of abstraction. Algorithm descriptions are 

independent of implementation-specific details like 

architecture of a target computing platform or version 

of a hazard computation library. 

A GMPE description contains the following sections:

• header;

• list of supported features: 

• tectonic region type;

• intensity measure types;

• intensity measure component;

• standard deviation types;

• list of required context parameters:

• site parameters;

• rupture parameters;

• site-to-rupture distances;

• kernel providing a list of functions;

• constant definitions;

• coefficient tables.

Design of GMPE descriptions has been modelled after 

OpenQuake. However, unlike OpenQuake, our DSL 

conceptually describes computation of the mean and 

standard deviation values for a single site and a single 

intensity measure type. This approach leads to leaner 

code and gives the compiler freedom for implementing 

parallel computations in a platform-specific way. 

The DSL allows construction of new GMPE 

descriptions by combining elements of already 

available descriptions for similar GMPEs thus 

eliminating redundancy in algorithm codes.
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Future research: High performance PSHA as a service
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Algorithms for ground motion prediction equations 

(GMPE) play a crucial role in implementation of PSHA 

computations. Hundreds of such algorithms have been 

developed so far and new algorithms are published 

every year as result of ongoing research. There is no 

commonly accepted standard for the formal description 

of GMPEs and researchers use a broad variety of 

programming languages for their implementation. As 

the result, codes for different GMPEs are frequently 

mutually incompatible and often specific for a certain 

computing environment. 

Furthermore, emergence of new high performance 

computing architectures like GPU accelerators or 

many-core processors substantially increases 

implementation complexity of GMPE algorithms and 

we expect that in the future this complexity will grow 

with the advent of even more sophisticated computing 

platforms. Therefore, there exists a clear need for a 

unified approach towards coding formalized GMPE 

descriptions, which could be immediately used on a 

broad range of modern and future computing systems 

without additional programming effort.
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