Reduction of Uncertainty for Source Term using Stress Drop Deviation
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ﬁ BACKGROUND AND PURPOSE OF THE STUDY
Under usual PSHA representation of strong motions, we use GMPEs

for PGA, PGV, and SA (Response Spectra of Acceleration) derived from
the regression analyses for observed strong ground motions. To
represent source terms in GMPEs we usually use magnitude with some
coefficients depending on source mechanisms. However, to reduce its
uncertainty it would be better to investigate physical parameters that
would have some impact to the spectral amplitudes.

In this study we first investigated the characteristics of strong ground
motions separated from acceleration Fourier spectra and acceleration
response spectra of 5% damping calculated from weak and moderate
ground motions observed by K-NET, KiK-net, and the JMA Shindokei
Network in Japan using the generalized spectral inversion method. Then
based on the separated source spectra of individual earthquakes we
obtain a linear formula to represent source terms as a function of

Qagnitude and estimated stress drop.

ﬁ GENERALIZED INVERSION WITH A FIXED REFERENCE SITE
As a reference for the separation method we use the outcrop

motions at a rock site, YMGHO1, where we extracted the site response
due to shallow weathered layers. We include events with JMA
magnitude=4.5 observed from 1996 to 2011. From corner frequencies
of Fourier source spectra and CMT seismic moment values, we
calculate Brune’s stress drops and find a clear magnitude dependence,
in which smaller events tend to spread over a wider range while
maintaining the same maximum value. We confirm that this is exactly
the case for several mainshock-aftershock sequences. The average
stress parameters for crustal earthquakes, ~0.8MPa, are much smaller
than those of subduction zone, either interplate or intraplate, ~5MPa,

which can be explained by their depth dependence.
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Figure 1 Source mechanisms and seismic moments of events used in the inversion (F-net)
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Next we compare the strong motion characteristics based on the 5%

damping acceleration response spectra RS and find that the separated
characteristics of strong ground motions are different, especially in the
lower frequency range less than 1Hz. These differences comes from the

difference between Fourier spectra and response spectra in the observed

4. REGRESSION OF SOURCE TERM WITH MOMENT MAGNITUDE \

After we obtained SA source terms of for each event, we do a linear
regression with respect to the moment magnitude, as GMPE analysis.
Irrespective of the frequency we can see remarkably good correlation

with linear lines, for all three types together.
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Figure 5 Linear regression of SA with moment magnitude for four different frequencies

5. STRESS DROP CORRECTION AND REDUCTION OF VARIATION \
After the extraction of linear trend with magnitude we can obtain
residuals for individual events and then correlate those residuals log-
linearly with stress drops. Correlation with stress drops R? is quite high,
more than 0.7 for most of
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Figure 2 Brune’s stress drop with respect to the seismic moment for three types
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