

HELMHOLTZ-ZENTRUM POTSDAM DEUTSCHES GEOFORSCHUNGSZENTRUM

Site Classification Derived From Spectral Clustering of Empirical Site Amplification Functions

Sreeram Reddy Kotha

with Fabrice Cotton & Dino Bindi

Section 2.6: Seismic Hazard and Stress Field

GFZ Potsdam

Site Amplification

Site effects: "The effect of 'local site conditions' on 'ground motion'"

WORKU, A. Soil-structure-interaction provisions: A potential tool to consider for economical seismic design of buildings?. J. S. Afr. Inst. Civ. Eng. [online]. 2014, vol.56, n.1, pp.54-62.

What are the issues?

- 1. Traditionally, site classes are defined <u>a priori</u>: V_{s30}, SPT, PI ranges etc.
- 2. Within each site class, the site-to-site variability of amplification is large

What is our plan?

- 1. Use a <u>rich strong motion dataset</u>
- 2. Derive empirical site amplification functions for well-recorded sites
- 3. Use <u>machine learning techniques</u> to identify and cluster similar sites
- 4. Evaluate <u>site response proxies</u> that explain the new site classes

Empirical Site Amplification Functions : δS2S_s(T)

HELMHOLTZ-ZENTRUM POTSDAM DEUTSCHES GEOFORSCHUNGSZENTRUM

Strong Motion Dataset: KiK-Net

HELMHOLTZ-ZENTRUM POTSDAM DEUTSCHES GEOFORSCHUNGSZENTRUM

<u>GMPE</u> for GM of H - components of Response Spectra for Shallow Crustal events

~16000 records : M3.4-M7.5, 0km < R_{JB} < 600km, T = 0.01s - 7s

~ 500 sites with more than 10 records

(Dawood, Rodriguez-Marek et al. 2016)

Data distribution

GMPE Random Effects and Residual Analysis

HELMHOLTZ-ZENTRUM POTSDAM DEUTSCHES **GeoForschungsZentrum**

High frequency $\delta S2S_s$ shows a weak trend with V_{S30}

9/12/2017

Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum

Spectral Clustering of $\delta S2S_s$ vectors

δW_{e,s}

T(s)

9/12/2017

Cluster Amplification Functions

HELMHOLTZ-ZENTRUM POTSDAM DEUTSCHES **GEOFORSCHUNGSZENTRUM**

<u>K-mean clustering of sites</u> with similar response $\delta S2S_s(T)$

K-mean clusters

Empirical Site Amplification Functions

HELMHOLTZ-ZENTRUM POTSDAM DEUTSCHES GEOFORSCHUNGSZENTRUM

Scale w.r.t *reference site* $\delta S2S_s(T)$, and then $e^{\delta S2Ss(T)}$

Amplification functions

Means of clustered $\delta S2S_{s}(T)$

Site Conditions

Physical meaning of cluster specific $\delta S2S_s(T)$

Amplification functions

Site conditions

Site Conditions and Proxies

Helmholtz-Zentrum Potsdam DEUTSCHES GEOFORSCHUNGSZENTRUM

Reference 'rock' site conditions?

Amplification functions

Site conditions

9/12/2017

Site Response Proxies

V_{S30} based classification may not be efficient

Site Amplification Functions: Mean and Variability

Within cluster site-to-site response variability ~ 50% smaller

Amplification functions

Site-to-site variability

HELMHOLTZ-ZENTRUM POTSDAM

GEOFORSCHUNGSZENTRUM

DEUTSCHES

What were the key issues?

- 1. Pre-defined sites classes based on V_{S30} may not be efficient
- 2. Large site-to-site variability within V_{S30} based classes

What we tried?

- 1. Site-specific random effects $\delta S2S_s(T)$ as empirical site AFs
- 2. Unsupervised machine learning techniques to cluster sites with similar response

What we found?

- 1. $V_{S10} H_{800}$ is an optimal proxy to classify 6 site clusters
- 2. <u>~ 50% smaller within-cluster site-to-site variability</u>

What next?

...Thank you... review?

- 1. The tools are open-source and easy to use... more sophistication is needed?
- 2. <u>With a pan-European dataset, we may expect very different results!!!</u>