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Comparison GFZ/ETHZ: epistemic uncertainties
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Our dream:  uncertainty reduction

• Selection: Need for global, transparent, and data-
driven regionalisation scheme to select models (e.g. 
GMPEs). 

• Sensitivity analysis: identify the parameters which 
are controlling epistemic uncertainties 

• Take advantage of the exponential growth of data 
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Germany : an active non subduction region ?  
USGS shake-map regionalisation
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Germany:  a stable Continental Region (Johnson, 1994) ?
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Fuzzy	Framework:	

If	moment	rate	is	high,	and	
			S	velocity	var.	is	low	
			Deg.	of	“Active”	is	high

Global, transparent, and data-driven  
regionalization  



A transparent and data-driven global tectonic 
regionalisation model for seismic hazard assessment 
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Stable Continent Region, Non-Craton

Stable Continent Region, Craton

Subduction

Active Continent Shallow Region

Stable Oceanic Region Active Oceanic Region

Chen Y.S, G., Weatherill, M. Pagani and F. Cotton. A 
transparent and data-driven global tectonic regionalisation 
model for seismic hazard assessment 



Our dream:  uncertainty reduction

• Selection: Need for global, transparent, and data-
driven regionalisation scheme to select models (e.g. 
GMPEs). 

• Sensitivity analysis: identify the parameters which 
are controlling epistemic uncertainties 

• Take advantage of the exponential growth of data 
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Identify the parameters which are controlling 
epistemic uncertainties
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Mmax stress drop 
adjustments



Sensitivities 
in seismic hazard 

assessment 
using automatic 
differentiation 
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Figure 1: Input density functions.

Results of the PSHA in terms of hazard curves ⌫(a,✓0, fosc) are depicted for the base case ✓0 in Figure523

2. Hazard curves are shown for the three di↵erent f
osc

(0.5, 10, 100 Hz) of interest in the SA. Return524

periods (475, 2475, 10000 years), which are considered in the SA are marked as horizontal lines in the525

figure. The base case parametrization ✓0 is given in Table 2526

The considered model output in the SA is A⇤, the distribution of ground motion levels given ⌫0 (or

T0 = 1/⌫0) and f
osc

. The distribution of A⇤ is obtained by evaluating the model at each sample point ✓
i

with i = 1, 2, ..., N solving iteratively Equation 30 using Newtons method. The N evaluations are done for

all scenarios considered (combinations of ⌫0 and f
osc

mentioned above). Single solutions a⇤(⌫0, fosc,✓0)

for the nine scenarios coincide with the nine intersections in Figure 2. Resulting distributions of A⇤

of the N model evaluations are depicted in terms of normalized histograms in Figure 3. As expected

with increasing return period T0 (decreasing ⌫0), A⇤ shifts to larger ground motion levels. Moreover, we
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SA, are marked as horizontal lines in the figure. The base
case parameterization θ0 is given in Table 3.

The distribution of A!, induced by epistemic uncer-
tainty, is obtained by evaluating the model atN sample points
θj with j " 1; 2;…; N solving iteratively equation (30)
using Newton’s method. The N evaluations are done for all
cases considered (combinations of T0 " 1=ν0 and fosc
mentioned above). Resulting distributions of A! in the N
model evaluations are depicted in terms of normalized histo-
grams in Figure 3. As expected with increasing return period
T0 (decreasing ν0), A! shifts to larger ground-motion levels.
Moreover, we observe from Figure 3 that the distribution of
the model output A!, for a given annual rate of exceedance ν0
(or return period T0 " 1=ν0) and fixed fosc, is approximately
lognormally distributed:

EQ-TARGET;temp:intralink-;df31;55;307 ln#A!$ " Y ∼N #μ; σ2$: #31$

This is indicated by the maximum-likelihood fitted lognor-
mal density functions (dashed black line in Fig. 3).

Local Sensitivities

To assess how small changes in the inputs influence the
model response, we compute local sensitivities at a reference
point θ0 (Table 3). The model output is a!#ν0; fosc; θ$, the
solution of equation (30); see also equation (25). Conse-
quently, local sensitivities are computed as follows:
EQ-TARGET;temp:intralink-;df32;55;163

di "
∂a!#θ$
∂θi

jθ0

" −
∂ν#a; fosc; θ$$

∂θi

!∂ν#a; fosc; θ$
∂a

"−1
ja!#θ0$: #32$

Relative sensitivities dreli " di#
θi

a!#θ0$
$ of a! with respect to

each input θi are shown in Figure 4. A percentage change

in the inputs (e.g., %1%) is related to a percentage change
in the model response. One can observe both the direction
and magnitude of the relative change in the model response
due to small relative changes in the individual inputs. For
example, we see that an increase in α leads to an increase in
a!, whereas an increase of η causes a decrease in a!. If the
stress parameter Δσ is increasing by 5% then the level of
expected ground motion a! at 100 Hz and 475 yr return
period is increasing by ≈4%. We clearly see which inputs
are correlated and which are anticorrelated with the model
response, regardless of oscillator frequency fosc or return
period T0. The group of correlated inputs includes
α; mmax;Δσ; q0; αq; sg, and the group of anticorrelated inputs
includes β; mmin; η; κ0; VS30; h. We note that though in certain
frequency return period cases some input variables (e.g., see
κ0) may show practically zero correlation, they never change
their correlation sign.

The absolute magnitude of the relative sensitivities in
Figure 4 allows us to identify the inputs with the highest local
effect on the model response. Inputs are varied by the same
small relative change from the base case. Independently of
fosc and T0, we find that there are three important inputs,
namely seismicity parameters β, α and ground-motion pre-
diction parameter η. Among these three, β has the largest ef-
fect. For a low fosc " 0:5 Hz, the effect of α is stronger than
that of η, whereas the effect of η is slightly larger than that of
α for larger fosc and T0. In general, it seems that the effect of
the seismicity parameters is more pronounced for low fosc.
There is a fourth input that has a substantial influence on the
model response. For large fosc, it is ground-motion predic-
tion parameter sg, whereas for low fosc (0.5 Hz) it is seismic-
ity parameter mmax. The input mmax has significant influence
at low fosc and its effect on the model response increases in
general, with larger return periods T0. The input Δσ always
has a moderate effect on the model response, regardless of
fosc or T0. The influence of κ0 increases strongly with larger
fosc. For large fosc and all T0, effect of κ0 is moderate and the
absolute magnitude of its relative sensitivities is comparable
with those of Δσ and larger than those of h and VS30. Inputs
with negligible effect on the model response are q0, αq and
for low fosc also κ0. The inputmmin has a negligible influence
in general, except for low return periods T0 and large fosc. In
this case, one can observe a minimal to moderate effect of
mmin on the model output.

Analysis of local perturbations may be valuable under
certain circumstances; however, often one is interested in the
effect the uncertainty of an input has on the model response
across the entire input domain. To address this issue, we per-
form a GSA considering the individual uncertainties in the
inputs.

Global Sensitivities: Graphical Techniques, Scatter
Plots

Scatter plots (Fig. 5) of model evaluations at several
sample points (quasi-MC samples) can serve as a first simple
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(fosc) for the base case. Horizontal dotted lines indicate different
return periods (T0 " 1=ν0 " 475, 2475, and 10,000 yr).

11

Derivative-Based GSA: Upper Bounding of Sensitivities in Seismic-Hazard Assessment Using AD 11Hazard curves from a stochastic PSHA modelling  

Molkenthin, C., Scherbaum, F., Griewank, A., Leovey, H., Kucherenko, S., 
Cotton, F. (2017): Derivative-Based Global Sensitivity Analysis: Upper 
Bounding of Sensitivities in Seismic-Hazard Assessment Using Automatic 
Differentiation. - Bulletin of the Seismological Society of America, 107, 2, p. 
984-1004. 

Christian 
Molkentin



15

SA, are marked as horizontal lines in the figure. The base
case parameterization θ0 is given in Table 3.
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EQ-TARGET;temp:intralink-;df31;55;307 ln#A!$ " Y ∼N #μ; σ2$: #31$
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EQ-TARGET;temp:intralink-;df32;55;163
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∂θi

jθ0

" −
∂ν#a; fosc; θ$$

∂θi

!∂ν#a; fosc; θ$
∂a

"−1
ja!#θ0$: #32$
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response, regardless of oscillator frequency fosc or return
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frequency return period cases some input variables (e.g., see
κ0) may show practically zero correlation, they never change
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effect on the model response. Inputs are varied by the same
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that of η, whereas the effect of η is slightly larger than that of
α for larger fosc and T0. In general, it seems that the effect of
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model response. For large fosc, it is ground-motion predic-
tion parameter sg, whereas for low fosc (0.5 Hz) it is seismic-
ity parameter mmax. The input mmax has significant influence
at low fosc and its effect on the model response increases in
general, with larger return periods T0. The input Δσ always
has a moderate effect on the model response, regardless of
fosc or T0. The influence of κ0 increases strongly with larger
fosc. For large fosc and all T0, effect of κ0 is moderate and the
absolute magnitude of its relative sensitivities is comparable
with those of Δσ and larger than those of h and VS30. Inputs
with negligible effect on the model response are q0, αq and
for low fosc also κ0. The inputmmin has a negligible influence
in general, except for low return periods T0 and large fosc. In
this case, one can observe a minimal to moderate effect of
mmin on the model output.

Analysis of local perturbations may be valuable under
certain circumstances; however, often one is interested in the
effect the uncertainty of an input has on the model response
across the entire input domain. To address this issue, we per-
form a GSA considering the individual uncertainties in the
inputs.

Global Sensitivities: Graphical Techniques, Scatter
Plots

Scatter plots (Fig. 5) of model evaluations at several
sample points (quasi-MC samples) can serve as a first simple
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Our dream:  uncertainty reduction

• Selection: Need for global, transparent, and data-
driven regionalisation scheme to select models (e.g. 
GMPEs). 

• Sensitivity analysis: identify the parameters which 
are controlling epistemic uncertainties 

• Take advantage of the exponential growth of data 

17
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High-quality strong-ground motion datasets

Akkar S., M. A. Sandıkkaya · M. ¸Senyurt ·A. Azari Sisi · B. 
Ö. Ay · P. Traversa · J. Douglas ·F. Cotton · L. Luzi · B. 
Hernandez · S. Godey. Reference database for seismic 
ground-motion in Europe (RESORCE). BEEE. Bull 
Earthquake Eng DOI 10.1007/s10518-013-9506-8



Al	AJk	et	al.,	2010

Between-
event and 

Within-event 
variability



Kotha et al., 2016 

Between-event terms of European Earthquakes  
(1970-2013)

σbetween-event = 
0.4 (Ln scale)

Sreeram 
Reddy 
Kotha 
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Norcia

Amatrice

Visso

Aquila

Between-event 
residuals of 
European 

Earthquakes 
(Resorce) and 
Central Italy 

earthquakes (ESM-
EPOS database)



Reduc&on	
due	to	Δσ

Other	controlling		
factor	enter	into	the	game	
(high	frequency		
event-dependent)		

An	other	controlling		
factor	enters	into	the	
game	
(high	frequency		
event-dependent:			
kappa_source)		

MODEL	1	–	f(M,	R)	+	δBe	+	δS2S	+	ε		

MODEL	2	–	f(M,	R,	Δσ)	+	δBe	+	δS2S	+	ε		

From observed variabilities to physics-based models

Bindi, D., Spallarossa, D., Pacor, F. (2017): Between-event and 
between-station variability observed in the Fourier and response 
spectra domains: comparison with seismological models. - 
Geophysical Journal International, 210, 2, p. 1092-1104. INGV	

Dino Bindi



Site specific amplification 
(adjustment relative to a given global model) 
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Aquila Earthquake, 2009

24

Gaudiosi	et	al	
2014	
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x1.57 x2.0

PGA

Site specific amplification  
(adjustment to  a « classical » European ergodic model based on Vs30)

Kotha, S. R., Bindi, D., & Cotton, F. (2017). From 
ergodic to region- and site-specific Probabilistic Seismic 
Hazard Assessment: Method development and 
application at European and Middle- Eastern sites. 
Earthquake Spectra, in press
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Site specific hazard curve 
(Aquila, site AQV)
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Difference between classical ergodic hazard estimation and 
region and site specific PSHA (225 stations Europe)
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NO FREE LUNCH: local data and site monitoring needed 
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Preliminary results of the processing 

10 

Processed segments: 
Events 1876 
Stations 629 
Segments ~150K (3C) 

Preliminary processing results 

11 

New: a large number of data in our backyard  !

i

Weak motion data-
mining of 

continuous 
European 

databases (EIDA)

Dino Bindi



30

S/N=4

S/N=4

CODA
SEDIMENTARY BASIN
OGDH (Grenoble - hôtel de ville)

ROCK
OGMU (Grenoble - Bastille)

<6Hz>

<6Hz>

<6Hz>

Am
pl

itu
de

Am
pl

itu
de

En
ve

lo
pe

Time (s)Time (s)

(a) (b)

	

....
....
....
....
....
....
.

.	

Dr.	Jessie	MAYOR	
Seismologist		
	
“Ground-motion	modeling	and	seismic	hazard	assessment”	

+33	(0)6	73	91	29	70	
	

65	av.	St	Exupéry,		
31400	Toulouse	–	France	

	

mayor.jessie@gmail.com	
	

French	Nationality	
	

Date	of	birth	:	04/05/1988		
	

		
	

EXPERIENCES	 |...................................................................................................................	

Researcher-Student	@	Institut	de	Recherche	en	Astrophysique	et	Planétologie	–	Toulouse,	FR	 			2013-2016	
	

§ Seismic	Data	Analysis	–	Signal	processing	–	Theoretical	development	–	Modeling	–	Seismic	hazard	analysis	–	
Ground	Motion	Prediction	–	Data	Collection	–	Development	of	Academic	&	Industrial	collaborations		

	

Engineer	Internship	@	Electricité	de	France	–	Aix-en-Provence,	FR		 	 	 															 	2012	
	

§ Macroseismic	Data	Analysis	–	Ground	Motion	Prediction	–	Empirical	Analysis		
	

Masters	Internship	@	Piton	de	la	Fournaise	Volcano	Observatory	–	La	Réunion	Island	,	FR	 						 	2012			
§ Signal	Processing	–	Modeling	

	

Engineer	Assistant	@	Institut	de	Recherche	des	Sciences	de	la	Terre	–	Grenoble,	FR						 		 														2010	
	

§ Data	Processing	–	Magnitude	Estimations	
	

SKILLS	 |...........................
.	

§ Technical	skills	
	

SCIENCES	.............................................................	
Modeling,	Data	processing,	Ground	Motion	Prediction	
	

COMPUTING	.......................................................	
Python,	Matlab,	C,	Pack	Office,	GMT		
	

LANGUAGES	.......................................................		
French	(mother	tongue),	English	
	

FIELD	EXPERIENCES......................................	
Paleoseismic	Data,	Fault	Analysis	
	

§ Transverse	skills	
	

MANAGEMENT	.................................................	
	

PEDAGOGY	.........................................................	

AWARDS	 |...........................
.	

INTERESTS	 |...........................
.	

2015	 Seismological	Society	of	America		
http://www.seismosoc.org/awards/student-awards/	
	

2010	 Merit	Scolarship	–	University	of	Grenoble	
	

2008	 UNESCO	–	French	Winner	IYPE	
http://yearofplanetearth.org/PressKit.pdf	

2016	 PhD	in	Seismology	@	University	of	Toulouse	–	FR		
§ Supervisors:	Dr.	Marie	Calvet	&	Dr.	Ludovic	Margerin	

2012	 Engineer	diploma	in	Geophysics	@	University	of	Strasbourg	–	FR		
§ Excellence	career	(Engineer	&	Research)	in	applied	Geophysics	–	with	honor	(rank:	6/42)	

	

2010	 Masters	Degree	in	Geosciences	@	Joseph	Fourier	University	–	Grenoble,	FR			
§ Development	of	Geological	&	Geophysical	skills	–	with	honor	(rank:	2/73)		

	
	

EDUCATION	 |...................................................................................................................	

REFERENCES	:	Ludovic	MARGERIN,	Seismologist-Researcher	-	Ludovic.Margerin@irap.omp.eu	+33(0)5	61	33	29	59	&	Paola	
TRAVERSA,	Seismologist-Engineer	-	Paola.Traversa@edf.fr	+33(0)4	42	95	95	35	

Regional attenuation properties : key 
contribution from the coda analysis

Jessie Mayor



Coda quality factor map (Qc) from Mayor et al. (2017)

Mayor et al.
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Capturing regional variations of hard-rock κ0 from coda 
analysis ?
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Epistemic uncertainties are large 
We can reduce them 

33

•Model selection (« think global »): Data-driven, global  and 
transparent regionalisation scheme. 

•Sensitivity analysis (« life is short »): A priori and 
application-specific sensitivity analysis to identify key 
« uncertain » parameters 

•Removing the ergodic assumption (« act local ») : Global 
and local datasets to refine aleatory variabilities, calibrate 
physics-based models input parameters and develop site 
specific PSHA 



Surprises of last years  (personal selection)

34

•Between-event ground-motion variabilities are large 
(even on the same fault system, tau=0.3) 

•Huge difference between site-specific and classical 
(ergodic) PSHA (+/- 50%) 

•New, data-driven, opportunities to understand non-linear site 
effects, near-source effects, kappa and stress-drops 
variabilities 



 Application-driven GMPE for seismic hazard assessments in non-
cratonic moderate-seismicity areas (NGA-west2 database)

35

Bindi, D., Cotton, F., Kotha, S., Bosse, C., Stromeyer, D., 
Grünthal, G. (2017): Application-driven ground motion 
prediction equation for seismic hazard assessments in non-
cratonic moderate-seismicity areas. - Journal of 
Seismology, 21, 5, p. 1201-1218.

Dino Bindi
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Development of regional Ground-Motion models

Kotha, S. R., Bindi, D., Cotton, F. (2016): Partially non-ergodic 
region specific GMPE for Europe and Middle-East. - Bulletin of 
Earthquake Engineering, 14, 4, p. 1245-1263. 
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New : Earthquake variability (computation of  
 between-event terms)

Kotha, S. R., Bindi, D., Cotton, F. (2016): Partially non-ergodic 
region specific GMPE for Europe and Middle-East. - Bulletin of 
Earthquake Engineering, 14, 4, p. 1245-1263. 


