Assessment of the KMA Earthquake Catalog

Myunghyun Noh Korea Institute of Nuclear Safety, Daejeon, South Korea

Abstract

Korea Meteorological Administration (KMA) is responsible for monitoring and reporting earthquakes occurring in and around the Korean Peninsula. To assess the completeness of KMA's reporting, I constructed sub-catalogs composed of the earthquakes occurred in the off-shore (O), North Korea (N), the land of South Korea (SL), and combinations of these. The completeness assessment were made using the Chi-square algorithm by Noh (2017) which simultaneously estimates the minimum magnitude of catalog completeness, m_c, maximum potential earthquake, m_{max}, and Richter-b.

First of all, the estimates of m_c are strikingly high. I think it is mainly due to the inconsistent magnitude scale over the observation period. As expected, the off-shore events (O) or northern events (N) are less complete than southern land events (SL). It is interesting that the catalogs including the off-shore events or northern events are much less complete than those of the off-shore events and northern events themselves. The estimates of m_{max} are larger by 0.1-0.3 than the observed maximum earthquakes in catalogs. The estimate of b is smaller for the off-shore events because smaller events are missing more and more as being farther from the coast. The same situation is expected for the northern events, but the result is not. I conjecture this is partly due to the inclusion of artificial events.

\bigcirc Method to Estimate m_{c} , m_{max} , and b

Definitions

- m_{max} : a maximum earthquake magnitude of a region or a seismic source
- Richter-b: a constant in Gutenberg & Richter relationship, $\log N = a bM$
- m_c : minimum magnitude that preserves the information on seismicity parameters, i.e., m_{max} and Richter-b \leftrightarrow all earthquakes above it were completely reported (Redelek & Sacks, 2000, Nature)

Probability Density Function (PDF) of Magnitude

- PDF for the continuous magnitude
- $> \log N = a bM \rightarrow p_0(m) = k\beta e^{-\beta(m-m_{min})}, \quad m_{min} \le m \le m_{max}, \text{ where } \beta = b \ln 10 \text{ and } k = \left[1 e^{-\beta(m_{max} m_{min})}\right]^{-1}$

Degrees of freedom

$\succ S - C$

- S: number of terms in PTS after making $n_i^{pre} \ge 5$
- C: number of constraints

≻No. of constraints: C = 3

- ① Same total frequencies for the observed and the predicted; $n_i^{pre} = p_{0i} \cdot \sum_{k=1}^{M} n_k^{obs} = p_{0i} \cdot N_{obs}$
- ② Estimation of the Richter-b ③ Estimation of m_{max}

$> PTS \sim X^2 (S-3)$

60 -

- PDF for the discrete magnitude
- > p_{0i} = Probability $\left(m_i \frac{\Delta m}{2} \le m < m_i + \frac{\Delta m}{2}\right) = \frac{e^{-\beta m_i}}{\sum_{k=1}^M e^{-\beta m_k}}$ where Δm is a width of magnitude intervals (Weichert, 1980, BSSA)
- Pearson's Test Statistic
- Definition
- ► $PTS = \sum_{i=1}^{M} \frac{\left(n_i^{obs} n_i^{pre}\right)^2}{n_i^{pre}} \sim X^2$, provided $n_i^{pre} \ge 5$
- where n_i^{obs} and n_i^{pre} are frequencies of the observed and predicted earthquakes in the *i*-th magnitude interval, respectively.

Earthquakes

- From Korea Meteorological Administration (KMA) for
 - ≻Period: 1981~2015
- ► Location: domestic
- \rightarrow 3,255 events, M0.1~M5.2

Sub-catalogs

- Sub-catalog SL
 Composed of only those earthquakes occurred in the land of South Korea (Republic of)
- Sub-catalog O
 Composed of the off-shore earthquakes only
- Sub-catalog N
 Composed of only those earthquakes occurred in the north Korea

- Sub-catalog SL+O
 Sum of sub-catalogs SL and O
- Sub-catalog SL+O+N
 Sum of sub-catalogs SL, O, and N

Assessment of Catalogs

- Effects of Foreshocks and Aftershocks
- Sub-catalog SL without and with foreshocks and aftershocks

Effects of foreshocks and aftershocks are insignificant

Assessment Results

Sub-catalog O and sub-catalog N

At the significance level of 30% or higher, estimates for all sub-catalogs become stable

Estimation at the significance level of 30%

Catalog	m_c		m_{max}		b	
	mean	s.d.	mean	s.d.	mean	s.d.
SL	2.8	0.22	5.1	0.55	1.13	0.173
SL+O	3.6	0.45	5.3	0.15	0.838	0.274
SL+O+N	3.8	0.26	5.3	0.19	0.818	0.256
0	3.2	0.54	5.3	0.14	0.778	0.194
Ν	3.1	0.31	4.8	0.32	1.298	0.415

Discussion and Conclusions

- Determination of significance level
- Estimates of m_c
- Estimates of m_c are strikingly high, considering the Korean seismic networks \leftarrow Mainly due to inconsistent magnitude scales over the observation period
- m_c for the off-shore events (O) and the northern events (N) are lager than that for the inland events (SL) \leftarrow The off-shore seismic network is much poorer than the land seismic network
- m_c for the sub-catalogs including the off-shore events (SL+O) or northern events (SL+O+N) is much higher than that for the sub-catalog O or the sub-catalog N

\Leftrightarrow Estimates of m_{max}

Estimates of m_{max} are larger by 0.1-0.3 magnitude unit than the observed ones in sub-catalogs

Estimates of Richter-b

- Estimates of b are smaller for the off-shore events (O) than for the inland events (SL) —Smaller earthquakes are missing more and more as getting far from the coast due to more sparse seismic stations
- But the opposite is observed for the earthquakes in the northern (N) under the similar situation ← Probably due to inclusion of artificial events