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Site amplification

The quality of many products in seismology and engineering seismology

depends on a correct treatment of the site-response:
Magnitude, source inversions, GMPEs, seismic hazard and risk products, etc.

Site amplification Swiss networks Variation in Intensity

20
«— +III <«Extreme» sites

10
— +I1I Soft sediments
— +1 Sediments

<«— Reference rock

Site Ampl. Factor

«— =1 Hard rock

0.2

Frequency (Hz)



Site amplification

Seismic hazard is
mostly driven by local
site-effects.

S.Gregorio (IX MCS)

Monticchio (V-VI MCS) Courtesy D. Albarello

Macroseismic Map LAquila earthquake of April 9, 2009
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Site amplification

Onna (IX-X MCS)

Monticchio (V-VI MCS) s (/

LAquila earthquake 2009

Similar buildings but different damage o ey
Courtesy D. Albarello
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A long dream: Easy ways to classify site-amplification
- Using «relevant» site-properties (Proxies) to predict measured amplification
(Geophysical, geotechnical, geological, geometrical site properties)

Today’s practice:
- Use Vs30 as a proxy to define site-amplification (maybe combined with f)
- In some cases: Vs30 proxy is derived from other proxies (topography, geology)

Does this practice introduce flaws in seismic hazard and risk products?
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A long dream: Easy ways to classify site-amplification
- Using «relevant» site-properties (Proxies) to predict measured amplification
(Geophysical, geotechnical, geological, geometrical site properties)

Today’s practice:

- Use Vs30 as a proxy to define site-amplification (maybe combined with f)
- In some cases: Vs30 proxy is derived from other proxies (topography, geology)
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Issues A/‘

* One Vs30 value corresponds to many models (reliability of Vs30 often unknown)
* Smoothing over broad Vs30 or f, ranges destroys information on site-specific amplification:

- Large range in site properties reduces average amplification,

(1) soil classes in building codes

KIKNet Sites (Class D) Observed amplification
0 VsProfiles-KiKNet-ClassD RespAmpH-M6,50R1056.3-EmpMod-KiKNet-ClassD
10 - - 10 + ; i -
30 S W
= E 1 A E
£ 40 | o ,
= | £
< 50 - i - <
o ‘ |
A2 60 |
0.1
70 i s © 25
i Q
90 1 e ‘ [ " 150 )
100 - M5 Z 0 . .
0 1000 2000 3000 0.1 1 10 100
Velocity (m/s) Frequency (Hz)

from Poggi et al. (2015)



Issues J\"

 (2) Vs30 based GMPEs:
Empirical models for amplification derived from GMPEs (blue and red) are

generally too smooth due to averaging over many sites when compared to
empirical models derived from spectral modeling (gray).

= V530 does not contain information about resonances
Vs30 = 279m/s, Class C2 Vs30 = 342m/s, Class E
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How can we address the problem? A

Local seismic hazard assessment requires our understanding
of site-specific ground motion (before a strong earthquake):

1)

Interpretation of earthquake recordings using methods as
site-amplification from spectral modelling of ground motion:

What means «free-field» condition for a seismic stations?
Issue of 1D, 2D or 3D resonances ?

Presence of edge-generated surface waves ?

Presence of focusing/defocusing effects ?

Possibility of non-linear soil effects ?



How can we address the problem? A

Local seismic hazard assessment requires our understanding
of site-specific ground motion (before a strong earthquake):

1)

2)

Interpretation of earthquake recordings using methods as
site-amplification from spectral modelling of ground motion:

What means «free-field» condition for a seismic stations?
Issue of 1D, 2D or 3D resonances ?

Presence of edge-generated surface waves ?

Presence of focusing/defocusing effects ?

Possibility of non-linear soil effects ?

Characterization of the sites of seismic stations is key

- Geology, topography, rock interface at depth, fracturing, ..
- Geophysical measurements (f, from H/V, S-wave profiles, ....
- Geotechnical measurements (SPT, CPT, ....)
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Site Characterization

Evolving procedures at the Swiss Seismological Service for new permanent seismic
stations since 2009 (Access: http://stations.seismo.ethz.ch)

2009: 27 sites (mostly rock sites) in the Pegasos Refinement Project
2013: 30 sites of the Swiss strong-motion network renewal — Phase 1
2014: 16 sites from NagraNet project and Basel mitigation project
2020: 70 sites of the Swiss strong motion network renewal — Phase 2
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(see poster by Paolo Bergamo et al.)
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Target from measurements:
- Rayleigh waves dispersion curves

- Rayleigh waves ellipticity , f,and shape of H/V curves
- Love waves dispersion curves

- Identification of 2D resonances and polarization features
- Derivation of velocity profiles including their uncertainties

Methods:

- Ambient vibrations: H/V, HRBF, SPAC, WaveDec, RayDeec,....

- Combination of the ambient vibration with active methods

- Ground-motion polarisation analysis

- Frequency-domain decomposition to analyse 2D resonances

The long-term goal: New ways to classify sites



S-Wave Velocity Profiles A

* Vs30 is a wavelength measure = Hazard is defined in the frequency space
* Vs30is just a point in the quarter-wavelength representation of a site:

Quarter-wavelength (QWL) representation of velocity profiles
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Ground motion analysis A

Site-amplification from spectral modelling of ground motion:
Stochastic ground-motion prediction model for reference rock in a regional network
(e.g. Edwards et al. (2013) for the Swiss Networks)

Qu(fir) = @ @ £Y/(F + 1)+ Sy(r) - exp(-n « £ - £%) - A(F) - exp(-n - £ Ky).
\ v J N v J N v J

Source Spectrum Path Effects Site Effects

Ground motion at reference rock




Ground motion analysis M
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Site-amplification from spectral modelling of ground motion:
Stochastic ground-motion prediction model for reference rock in a regional network
(e.g. Edwards et al. (2013) for the Swiss Networks)
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Ground motion analysis A

Site-amplification from spectral modelling of ground motion:
Stochastic ground-motion prediction model for reference rock in a regional network
(e.g. Edwards et al. (2013) for the Swiss Networks)

Qy(fir) = @ @ FL /(S + ) 1 Sy(r) - exp(en - £ %)
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Ground motion analysis
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Automatic determination of site-specific empirical amplification
for all stations relative to the fixed reference-bedrock profile.

SDSNet and SSMNet Realtime Stations
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Ground motion analysis A

1) Derive features of the site response by comparison with computed
1D SH-amplification from the measured velocity profiles:

Edge-generated surface waves
at Lucerne site

Simple 1D response
at Lausanne EPFL site
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Ground motion analysis

www.gelsma.cthz.ch

2) Use site amplification from spectral modelling for site classification

Edges-Generated Surface Waves
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Ground motion analysis A

Empirical relations for site-amplification based on quarter-wavelength velocity
and contrast generally do a rather good job:

Amplification from velocity profiles Station HYGH10 |
- Based on stochastic ground-motion
prediction model for Switzerland and Japan
- Referenced to the same rock velocity-profile : |
- Model using Qwl and QwlI-contrast } — Back-computed

Amplification

(Poggi et al., 2013) ol
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V/H ratios from velocity profiles
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T

- Rock model using Qwl-representation

(Edwards et al, 2011)
- Soil model using Qwl and Qwl-contrast

(Poggi et al., 2012)
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Fundamental frequency f,
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One Vs30 value corresponds to many models (reliability of Vs30 often unknown)

—> Adding f, information reduces the model space
—> H/V measurements is a cheap tool to determine f,

However:

- f, might be related to different interfaces or 2D resonances:
rock-rock, rock-sediment, sediment-sediment
- There might be several peaks in H/V, maybe not related to resonances

- In structures with only velocity-gradients and no Vs-contrast,
we cannot identify f,from H/V curves

Advanced methods: H/V Inversion, H/V classification, arrays for 2D structures

H/V spectral ratio

H/V spectral ratio
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2D/3D Geometrical Effects A

* Surface topography (NERA-JRA1 report doi:10.3929/ethz-a-010222426)
- Influence of geometry on amplification is small (maximum ~ factor 2)
- Rock/soil properties are more important than geometry
- Scattering by topography might be important but is not only a local property
- Needs classification related to length scales in high-resolution digital maps
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e Subsurface topography:
- Dipping layers (identified from H/V in array measurements)
- 2D/3D resonances (polarization, shape of eigenmodes from arrays)
- Edge-generated surface waves (e.g. identified from amplification function):
- Needs classification related to length scales of basin geometry
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2D Resonances in Alpine valleys

|dentification of 2D resonances in alpine valleys

Rhone Valley (Switzerland)

All stations have similar polarization of H/V at f,
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2D Resonances in Alpine valleys M
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|dentification of 2D resonances in alpine valleys

SSR Vel Mode shapes (Ermert et al., 2013)
Frequency-Domain Decomposition

(no need for a reference site)
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Some recommendations M

For networks operators and developers of GMPEs:
Systematic and detailed site-characterization is required for seismic stations

» Site-classification beyond Vs30 and f,,, including quarter-wavelength representation, 2D and
3D effects, geometrical and geological properties, non-linear site behavior, station
installation, etc.

» Combine site properties with observed site amplification for classification of sites.

For seismic-hazard and -risk modelers:
There is yet no simple proxy to define site-amplification A(f)

» This needs complete and transparent treatment of epistemic uncertainties.
> There are tools to map A(f): Microzonation (DOI:10.3929/ethz-a-010735479).

For decision makers and users:

» Be aware of the issues related to the correct treatment of site-amplification.

» Large investments are required to achieve reliable estimates of site-response.



