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Background

 Deep mining (~3-4 km) in South Africa
provides a good opportunity to observe the
preparation and generation processes of
earthquakes in the vicinity of seismic sources.

* South Africa and Japan has collaborated to
study mining induced seismicity since 1994.

* Microseismicity (M<-4) monitoring started in
2007



Objects

* To bridge a scale gap between laboratory
experiments (up to 1 m) and natural
earthquakes (>100 m)

* To elucidate the preparation processes of
faulting in geological structure, in contrast to
artificially polished surface in lab.



Context

* Microseismicity before and after an Mw2.2
earthquake
— Aftershock distribution
— Earthquake preparation process implied by
foreshock activity
* Migrating planar seismicity in front to mining
edge (if possible)



Miciroseismicity
before and after
Mw2.2 earthquake
iIn Mponeng mine



Correction

e We found a mistake in data selection after
submission of abstract. Some results are
different from the abstract.



Mw2.2 earthquake in Mponeng mine

* Observation network was deployed in June
2007.

* On 27 Dec 2007, an earthquake (Mw?2.2,
mainshock) occurred ~30 m above our
network.

 We could record foreshock activity for ~6
months and ~10,000 aftershocks during 150 hr
following the mainshock.



Observation site

~3.3 km
gold reef
/ PGdie
access tunnel (~30 m thick)

v Observation site was at a depth ~3.3 km from surface and 90 m below the reef.
v PG dike (gabbro) was left unmined as a pillar.



Observation network

" Host rock

Dike

Host rock

Accelerometer

10 m

Observation network consisted of 7 AE sensors, 1 triaxial
accelerometer and 2 strainmeter.
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v" Microseismicity for 150 hr immediately after the mainshock can be classified to 5
clusters.
v The mainshock hypocenter was located on a plane of cluster A.
v" Cluster D was on a northern extension of the plane of cluster A, but showed clear
discontinuity from cluster A.
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Fine structures of the rupture plane

of the mainshock
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Microseismicity
before and after the mainshock

cross-section
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v Even before the mainshock fault, seismicity can be recognized on the
mainshock fault for 6 months.
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Event rate [events/hr]

Long- to intermediate-term
whole foreshock activity
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v Long-term (months) foreshock activity was modulated by stress
perturbation associated with mining.

v Neither long-term nor intermediate-term (weeks) foreshock activity as
a whole showed acceleration prior to the mainshock.
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Foreshock distribution on the fault

on-site pick
v Eoreshocks conf:entrated to o 2007 Ock
fixed 3 clusters irrelevant to | © 2007 Nov |
mining activity, suggesting ® 2007 Dec

that foreshock clusters
might occur at weak
patches.

v’ Foreshock clusters and
aftershock clusters merely
overlap to each other.

v The mainshock hypocenter
was neighboring to the
cluster F1.
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Long-term activity in each clus

(a)
Long-term activity in 2
each cluster was =
modulated by mining 2
activity, as well. g
When the holiday c
started, activities in F1
and F3 ceased.

(c)
Activity in F2 became _
higher even after the %
holiday started. E
Slip patch at F2 IS
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about 10 days before
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Foreshock activity in F2
immediately before the mainshock

Because of mine’s holiday, no
stress perturbation for 7 days
before the mainshock.

Interval time of foreshocks in
F2 showed a monotonic, linear
decrease with time to the
mainshock.

Linear extrapolation predicted
time of the mainshock 1.3 days
before the actual occurrence
time of the mainshock.
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Foreshocks for 64 hr before the mainshock
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v' 9 of 10 immediate foreshocks within a few days before the mainshock occurred
within high CFF area on the pre-existing plane of weakness.

v" Immediate foreshock activity also did not show acceleration.

v The foreshock #1 occurred 50 minutes before the mainshock. 17



Implicated preparation process

0 More than 3 months before the
mainshock

Persistent foreshock activities

(localized preslip) initiated at weak
patches F1-F3.

O 1.1-1.3 days to the mainshock

Slip patch at F2 became critical and
had been quasi-dynamically

expanding. However, its expansion

was decelerated by high strength
around F2.

0 50 minutes to the mainshock

The slip patch expanded from F2
coalesced with a slip patch at F1.

0 The occurrence of the mainshock at
15:15 on 27 Dec 2007.
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Migrating planer microseismicity
in Cooke4 mine



Observation network in Cooke4

— mining front at 11 Jul 2011
— mining front by 23 Nov 2011
mining front by 26 Mar 2012

e 30 kHz AE sendor x 24
e 10 kHz accelerometer x 3
e 25 kHz accelerometer x3

trigger recording, 500 kS/s, ~65 ms
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Seismicity for 9 months

10 90 % events occurred in
| front of active mining edge

Automatically picking P arrivals

— 20— )
£ . P arrivals 2 10
> " rms arrival time residual £ 0.2 ms

Ny s e % About 1 million events
200 50 00 s0 0 50 ywith -5.3 < Mw < 0.1 for
Jul 2011-Mar 2012
were located.
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Crack formation
in front of active mining edge
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Migration of planer activity

v' Regularly spacing ~10 planer ] AE activity in this period 24404
structures 207 4/4.9/1 o W g events
T -3.3<Mw<-0.5
v Dipping by 60~70° to south
v’ Sub-parallel to the mining edge Apr, 2012 - -
v’ Locati f pl tivit o Mw=-0.8"
ocation of planer activity s o probably bst)
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Summary

 AE observation has abilities of

— monitoring preparation processes of
faulting.

—delineating fine structures of faults and
joints buried in rock mass.

— detecting nucleation of newly generated
cracks.



Wikimapia Satellite
Let’s hope ICDP allows us a workshop to discuss scientific
objectives and the best strategy
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Mainshock as a Mohr-Coulomb failure
in the PG di,ke
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comp. axis
ext. axis |
v’ Strain monitoring revealed ~20 MPa increase in sub-vertical axial compression
for 9 months prior to the mainshock.

v" A nodal plane of the mainshock focal mechanism was an optimum plane for the
Mohr-Coulomb failure in the PG dike under sub-vertical compression.

Naoi et al. (2011)
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Concentration of AE activity
before the mainshock to the fault
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Clear concentration within 1.2 m from the mainshock
fault



The mainshock occurred on

a pre-existing plane of weakness.
(b)

(a)
-80

v" A borehole passing
through the mainshock
fault was drilled ~1.5 yr
after the mainshock.

v’ Alteration by ancient
thermal activity was found | o\
only in a sample recovered 80 604020 0 20 40 60 80
on the mainshock fault.
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(c)
v" The mainshock occurred 500 um
on a pre-existing plane of sample32
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Comparison of distributions of
manually located and automatically located foreshocks
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Comparison between manually located
and automatically located hypocenters
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Planer AE distribution

in front of mining edge

v’ Regularly spacing ~10 planer
structures

v" Dipping by 60~70° to south

v’ Sub-parallel to the mining edge

24404 events, -3.3<Mw <-0.5
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