
Conclusion

This research has been carried out in the context of the CATO-2-program 
(www.co2 cato.org), the Dutch na�Ÿonal research program on CO2 
Capture and Storage technology (CCS). The program is �.nancially 
supported by the Dutch government (Ministry of Economic A�+airs) and 
the CATO-2 consor�Ÿum par�Ÿes.

 - Dependency of friction behavior on slip and slip-rate 
change the rupture characteristics. 
 - Seismicity phases & amplitude can  di�erent for same 
stress changes but di�erent constitutive fault properties
 - Numerical models can predict the area undergoing slip 
and the amount of shear/normal slip. However, although 
all seismic events are failure of weakness plane, rupture 
events can also lead to aseismic deformation. 
 - Assuming most of the crust is critically stressed, how 
can we control seismicity? 
 - How does it happen that only in “a few“ unlucky spots 
human activity can be associated with human-felt seis-
mic events?
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Coupled hydromechanical model and dynamic failure
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 Overburden Caprock Reservoir Basement Fault 

Density (kg/m3) 2300 2300 2300 2300 2300 

Young’s mod. 

(GPa) 

10 10 10 10 10 

Poisson’s ratio  0.25 0.25 0.25 0.25 0.25 

Vp (m/s) 2284 2284 2284 2284 2284 

Vs(m/s) 1319 1319 1319 1319 1319 

Permeability 10-14 10-17 10-12 10-16 10-16 

Porosity 0.1 0.01 0.1 0.001 0.01 
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Friction evolution 

TPV10-2D

TPV11-2D

The mechancal solver provides results consistent with benchmarks made available by the 
Southern California Earthquake Center/ U.S. Geological Survey (SCEC/USGS) Dynamic 
Earthquake Rupture Code Veri�cation Exercise.
The problem shown here is the so-called Problem Version 10-2D & 11-2D

Benchmarking of dynamic geomechanical model

 

TPV11-2D 
�t  Homogeneous elas�Ÿc half space
�t  vp = 5716 m/s 
�t  vs = 3300 m/s 
�t  density = 2700 kg/m3
�t  Slip-weakening, cr�]�Ÿcal dist 0.5m 
�t  Dynamic fric�Ÿon = 0.448
�t  Static fric�Ÿon = 0.760
�t  Cohesion = 0.2 MPa

 TPV11-2D
�t  Sta�Ÿc fric�Ÿon = 0.570

Measurment of change in 
steady-state (sliding) friction in 
response to change in sliding ve-
locity from V�

Associated with velocity weak-
ening, stick slip events take 
place. 
Lab equivalent of seismic slip. From Pluymaeker  et al. (2014) “E�ects of temperature 

and CO2 on the frictional behavior of simulated 
anhydrite fault rock”. 
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The numerical tools
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Rupture
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ux , uy = continuous
�ox x, �oyy = continuous

�o � �+sx x�oyy 

�o depending on frictional behaviour 

ux  = continuous
�ox x, �oyy = continuous

S= slider  ���+����C�����s�	
T= tensile strength
kn= normal sti�ness
ks= shear sti�ness

Boundary conditions on fault

Production or injection of �uids from/into the underground has the po-
tential to cause seismic events. Although  di�erent physical mechanisms 
have been proposed and proven possible, nucleation of a seismic event 
and how the magnitude of the rupture evolves presents still many open 
questions.
Injection of �uid at shallow crustal depth (1-5 km) can lead to reactivation 
of existing fault, however it is not yet possible to pinpoint the causality re-
lationship between the human activity and the expected magnitude or 
the seismic activity.
Similar amount of �uid injected (10-100 thousands of m3) at similar pres-
sures above in-situ condition (1-10 MPa) in proximity of a fault led to a 
range of  di�erent response, from human-felt event to large-scale aseismic 
motion.
Monitoring of induced and triggered seismicity can provide a vast amount 
of data, which can be used to upscale results from the lab.
A numerical forward investigation is proposed here, to couple anthropo-
genic activity and shearing on a fault, with the goal of de�ning changes 
due to pressure/temperature and microstructural processes.

Induced seismicity, is it only Dp?
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