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Abstract: New induced seismicity forecast models are currently being built and calibrated to become part of a real-time hazard assessment tool — the Advanced Traffic Light System ATLS. The models that currently are able to
reproduce event numbers and statistics of observed induced seismicity sequences range from basic statistical models to so-called hybrid approaches. In the latter, seismicity is triggered by transient pressure changes modelled by linear
or non-linear pressure diffusion models. A severe limitation of the current hybrid models is their loose coupling between seismicity and fluid flow, i.e. they include only one-way coupling from pressure to seismicity, but ignore the feedback
of seismicity on the permeability field. We propose a new equivalent continuum fluid flow approach, in which seismicity is triggered by pressure diffusion on potential earthquake hypocenters randomly distributed in space. In addition,
two-way coupling is enabled by enhancing permeability in the mesh cells intersected by the source area of the triggered earthquakes. Upon triggering the induced events are assigned a magnitude randomly drawn from Gutenberg-Richter
distribution with a pre-defined b-value. The earthquake catalogues thus produced by a stochastic process exhibit a realistic statistical distribution. By enhancing permeability in dependence of slip that is estimated from magnitude and
standard earthquake scaling laws, the model yields not only estimates of seismic hazard, but also of the degree of reservoir permeability enhancement obtained by the spent seismic hazard. In the framework of a real-time traffic light
system, such a model would not only inform on the current seismic hazard, but also if the required reservoir properties have been achieved. The traffic light system could then be operated with two stop criteria: one based on seismic

hazard, the other on based on reservoir size and properties. Here, we present the model procedure along with first results from joint calibration against induced seismicity data as well as wellhead pressure and flow rate as observed
during the stimulation at the Basel EGS project in 2006.
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Conclusions References

e 2D two-way coupled seismicity-fluid flow model can be calibrated against

real observations (e.g. in Basel).

* Near-real-time performance is possible

through massive upscaling

e Many application beyond real-time seismic hazard forecasting:
e.g. scenario modeling, reservoir design tool.

* Design tool: it may be possible to estimate the heat exchanger
properties that can be obtained at a predefined level of seismic hazard

considered allowable for a project site.

e Scenarion models:

- It was shown that less than 10 magnitudes M = 1.5 may
contribute as much to permeability enhancement as more

than 100 smaller ones.

- At a given site, the achievable permeability enhancement is
strongly tied to seismic hazard. Site specific conditions have
a much larger impact on seismic hazard than injection strategy.
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