asoci Mechanics Laboratoria La

Laboratory simulations of fluid-induced seismicity in shallow volcanic settings

University of **Portsmouth**

Philip Benson

Rock Mechanics Laboratory, University of Portsmouth

+ Marco Fazio, Richard Bakker, Sergio Vinciguerra, Paul Young, Farzine Nasseri, Phil Meredith

http://www.port.ac.uk/school-of-earth-and-environmental-sciences/research/rock-mechanics-laboratory/

Part I: Laboratory simulation of VT/LF earthquakes in active volcanic settings

- VT and LF seismicity are key methods for monitoring active volcanoes...
- The precise source of LF seismicity remains controversial but is generally thought to be linked to fluid movement, resonance, and turbulence (wor Rationale:
- AE is easily measured in the laboratory (AE) during

- Prediction of volcanic unrest is difficult: However, eruptions are often preceded by increasing duration and
 Finstances of VT and LF / LP type events
- AE eve • First, we try to reproduce VT and especially LF events in the laboratory using triaxial deformation and rock physics methods: in order to control and explore the physics of such the

cracks and fractures.

Experimental setup

Experimental setup (schematic)

Experiments are conducted in two stages:

I. Standard triaxial deformation to create a fracture and damage zone

2. Pore pressure is rapidly released (decompressed) in order to stimulate rapid fluid movement though that same, characterised damage zone.

Stage I: Mechanical response of Etna basalt

Volumetric strain, fractional

Mechanical response of Etna basalt

Pc=60 MPa, Pp=20 MPa, T=25C

Stage 2: Decompressing the (located) fault zone

Frequency changes: example

D E C

O M

Ρ

R

Е

S S

O N

Frequency comparisons: VT/LF

... cheeky but irresistible!

0 Μ Ρ R Ε S S Ο Ν

Forensic (SEM) analysis & models

Part 2) ... Yielding more questions:

New series of experiments (current work-in-progress!):

- Modify and develop better **sensors** to better capture the LF data (and concomitant pre-amplifier bandpass)...
- Improve fracture (eruption) **forecasting strategies** using fracture forecast models (FFM's)
- Explore any "thresholds" for induced seismic response in terms of pore pressures and/or temperatures required...
- Investigate the rate of pore pressure decrease (**fluid flux**) measuring this is not straightforward so pilot data concentrated on using a high but still plausible value (pore pressure of 10-20MPa)...

Low Vs. High Frequency sensors

Swarm of AE

Forecasting (briefly)

Forecasting (briefly)

- Use the inverse AE hit rate (Voight scheme); extrapolate to zero at time of "failure" (eruption)
- Often done with HF data (VT)...
- Although simplistic, this works well for volcanoes with long repose intervals (rock is intact), and simulations in the lab back this up:

Influences of pore pressure and temperature

Starting with the same fracture damage / process zone, try different pore-pressure-release "triggers" to examine thresholds for induced seismic response (and temperature/ phase)

 $T = 25^{\circ}C$; Pc = 35 MPa; Pp = 5 MPa

Decompression of pore space:

Water saturated
Via solenoid valve
Approx. 0.02s
pressure decay

T = 175°C ; Pc = 35 MPa ; Pp = 5 MPa

pore space:
Water saturated
Via solenoid valve
Approx. 0.02s
pressure decay (again)
Slightly different
character in power
spectra: longer coda

Decompression of

T = 175°C ; Pc = 46 MPa ; Pp = 16 MPa

Decompression of pore space:

- -Water saturated
- -Via solenoid valve
- Complex pressure decay (faster?)
 - More compact swarm (higher pressure?)
- Stronger component at low frequencies <100kHz?

T = 175°C ; Pc = 60 MPa ; Pp = 20 MPa

Decompression of pore space:

- Water saturated
- Via solenoid valve
- Link pressure decay to fluid phase...
- Evidence for liquid to gas transition confirmed by pure gas experiments....

Influences of pore pressure and temperature

Thoughts and challenges to date:

- Frequency of the sensors important (and associated response of the recording system)

- Some evidence for evolution of power spectra with fluid and confining pressure, but (clearly) a lot more work needed...

- Clipping a problem...

- Still no solutions to measuring a fluid flux directly: but the pressure drop may allow this to be calculated...

Bonus!) Lab simulation of dykeing

- High temperatures = nightmare! However.... PMMA, as an analogue, has been found to be very versatile as a substitute "glass" in TX experiments
- And with larger samples, easier to interpret the deformation

Lab simulation of dykeing

- Sample fails in tension... produces stress drop, and AE...

Dyke induced LF events?!?

Dyke induced LF events?!?

Thanks and acknowledgments to the team!

Dr. Pete Rowley Richard Bakker Scot Francis Stephan Gehne Tara Stevens Emily Butcher Claire Harnett

I Ith EURO-conference on Rock Physics and Geomechanics 2015

SECOND CIRCULAR

Holistic rock physics: integrating theory, observation and applications in space and time

6–11 September 2015 University of Cumbria, Ambleside, Lake District, UK

In this second circular, we are pleased to provide you with further information on the 11th EURO-conference.

Confirmed keynote speakers are: Prof. Brian Evans (MIT), Prof. Ian Jackson (ANU), Prof. Ernest Rutter (Manchester), Prof. Chris Spiers (Utrecht), and Prof. Paul Young (Toronto).

Sessions will include: (1) micromechanics of the brittle/ductile transition, (2) viscoelastity and poroelasticity in crustal rocks, (3) laboratory to field scale rock deformation, (4) fault healing and sealing, and, (5) fluid driven fracture mechanics and induced seismicity.

http://www.bgs.ac.uk/news/events/euro2015/home.html

Local organising committee: Philip Benson, Pete Rowley, Sergio Vinciguerra, Ian Main, Yan Lavallée, Tom Mitchell, Dan Faulkner, Linda Hetherington. Scientific advisory committee: Cino Viggiani, Philip Benson, Pierrre Bésuelle, Gary Couples, Christian David, Yves Guéguen, Patrick Baud, Alba Zappone, Francesca Funiciello.