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Introduction
Fluid injection at a pressure below the local minimum principal

total stress in a fault may (re)activate shear crack propagation

(hydroshearing). Because of the presence of asperities along the

fault’s surfaces, the fault hydraulic width increase with the slip

(up to a constant value).

The question we want to address in this contribution is the fol-

lowing: does the increment of hydraulic width (dilatancy) affect

the shear crack propagation along the fault? does it play a role

in the shear crack propagation of unstable faults?

Garagash & Germanovich [1] showed that a fault subjected to lo-

cally elevated pore pressure associated with fluid injection hosts

different limiting regimes depending on how far the initial stress

state is from its strength level. Notably when a fault is stressed

almost to its static strength level (critically loaded fault), a large

slip zone is expected. Hence at the nucleation time, the pressur-

ized region is within the slipping patch. On the other hand, for

a marginally pressurized fault (i.e when the pore pressure is just

enough to activate the slip), the slipping patch is much slower

than the diffusive growth of the pressurized zone.

In addition to this, they showed that the regime of propagation

of such pressurized faults can be ultimately stable or unstable

depending on whether the initial shear stress state is greater or

lower than the fault residual strength. In the former case the

shear crack propagates with a moderate velocity (quasi-static)

as it is induced by fluid pressure diffusion (but it might turns

into a dynamic instability followed by an arrest). In the latter

case, the shear crack initially propagates quasi-statically; then,

as slip accumulate along the fault, the quasi-static crack growth

become unstable and the shear crack runs away.

The effect of dilatancy leads to a local reduction of pore-pressure

at the shear crack tip depending on the ability (viscosity-related)

of the fluid to flow in the newly created void space, leading to a

stabilising effect [2].

Numerical scheme description
The elasticity equation (1) is solved numerically using Displace-

ment Discontinuity Method (with piecewise linear shear displace-

ment discontinuities), whereas the fluid flow is discretised using

Finite Volume Method (3).

The algorithm solves the fully coupled problem with an implicit

scheme: in one increment of time, it calculates the current in-

crement of pressure and increment of slip (by making use of the

current total slip and pressure distribution) and at the same it

enforce the M-C criterion (2). As a result, the slippage length is

calculated.

The non linear system of equations (the dilatancy depends on

the current slip) is solved using fixed point iterations combined

with under relaxation.

Conclusion
• Figures 2 and 3 show that our code matches perfectly

the semi-analytical solution of Garagash & Germanovich
(2012) for the case of non-dilatant fault.

• Depending on the ratio between the background shear
stress and the ambient frictional strength, a fault can
host a dynamic instability followed by an arrest
(ultimately stable fault, figure 2 - left) or a dynamic
instability without any arrest (unstable fault, figure 2 -
right).

• The dilatant hardening directly affects the regime of
propagation; its effect may suppress the dynamic
instability for both ultimately stable faults and unstable
faults. This is because of the pressure drops localised at
the crack tip during high slip rate (figure 3 - left), which
leads to an increment of effective stresses and
consequently a stabilising effect.

• From figure 3 (right), we can observe (as expected) that
the pressure drop for a marginally pressurized fault is
within the pressurized region as the slipping patch is
much slower than the diffusive growth of the pressurized
zone.
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Quasi-static shear crack propagation under fluid injection
Let us consider an impermeable linear elastic medium with a long fault under a uniform background stress field characterised by the
normal σn and shear τb components (Figure 1 - left). In addition to this, let us suppose the presence of a shear crack of a finite length
2a acting on the fault.

Figure 1: Model of shear weakening dilatant fault and loading conditions (left); Friction weakening law (center); Dilatant hardening law
(right).

By applying the distributed shear dislocation theory, under a Quasi-Static approximation [?], the shear stress depends on the slip by
means of the following singular integral equation of the first kind:

τ(x, t) = τb −
G

2π · (1− ν)

∫ a+(t)

a−(t)

∂δ(s, t)

∂s

ds

x− s
, |x| < a (1)

where τb(x, t) is the background shear stress, G is the shear modulus, ν is the Poisson’s ratio,
∂δ(s,t)
∂s

is the shear dislocation density,
1
x−s is the simple Cauchy kernel.

Within the fault region, we assume the shear weakening Mohr-Coulomb failure criterion. The shear stress on the fault must be less
(or equal) to the fault shear strength:

τ(x, t) ≤ f(δ)(σn − p0 − p(x, t)), (2)

where p0 is the ambient pore-pressure distribution in the fault, (σn − p0 − p(x, t)), also denoted as σ′, is the effective stress normal to
the fault and the friction coefficient f is assumed to weaken linearly with slip (Figure 1 - centre).
Under the lubrication approximation and under the assumption of slightly compressible liquid of compressibility cf , the width averaged
mass conservation in the fault reduces to the following continuity equation

whcf
∂p

∂t
+
∂wh

∂t
−

∂

∂x

(
whkf

12µ

∂p

∂x

)
= 0, (3)

where kf is the fault permeability, µ is the fluid viscosity and wh is the hydraulic aperture, which we assume it increases exponentially
with the slip (dilatant hardening - Figure 1 - right). By doing a dimensional analysis, we can show that the problem is governed by
the following dimensionless parameters:

τb

τp
,

∆p

σ′o
,
fr

fp
,

√
αt

aw
,
εd

cfσ′o
, (4)

where α =
kf

cf ·12µ
is the hydraulic diffusivity, aw = µ∗

τp
δw is the patch length scale, εd = ∆wh

who
is the increment of dilatancy with

respect to its initial value and σ′o = σn − po is the ambient effective stress.

Results
Solutions of the governing equations for an ultimately stable & unstable fault (in terms of normalized crack half-length a/aw and
normalized peak slip δ/δw) as a function of normalized time

√
αt/aw, understress (τb)/τp, overpressure ∆p/σ′0, fr/fp = 0.6 and

dimensionless dilatancy parameter εd
cfσ
′
o

are hereunder reported.
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Figure 2: QS development of the normalised crack half-length for an ultimately stable fault (τb/τp = 0.55 - left) and for an unstable fault

(τb/τp = 0.75 - right), for various values of dimensionless dilatancy coefficient
εd
cfσ
′
o

and a value of constant overpressure. The marked lines

correspond to the G&G’s results for quasi-static crack propagation without dilatant hardening [1].

The corresponding evolution of pore pressure profile for an ultimately stable fault characterised by τb/τp = 0.55 is
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Figure 3: Pore pressure evolution for an ultimately stable fault characterised by τb/τp = 0.55 and εd =
εd
cfσ
′
o

= 1 (left). Snapshot of pore

pressure profile at
√
αt
aw

= 2.9 for an ultimately stable fault characterised different values of dimensionless dilatancy
εd
cfσ
′
o

(right).


